期刊文献+

一类四阶微积分方程的紧差分格式 被引量:2

Compact Difference for a Class of Fourth-Order Integro-Differential Equations
下载PDF
导出
摘要 针对由铰链梁横向振动模型而建立的四阶微积分方程,提出紧差分格式进行求解,利用Newton型迭代法处理积分项,给出差分格式解的存在性、收敛性和稳定性的证明.数值结果表明:格式的精度为O(h4). A compact difference scheme is proposed to solve the fourth-order integro-differential equation arising from the transverse vibrations of the hinge model. Newton type iteration methods are presented to deal with the integral term. The existence, convergence and stability of the scheme are also proved. Numerical results show that the accuracy order of the Scheme is of O(h4 ).
出处 《华侨大学学报(自然科学版)》 CAS 北大核心 2014年第2期232-237,共6页 Journal of Huaqiao University(Natural Science)
基金 国家自然科学基金资助项目(11126330) 福建省自然科学基金资助项目(2011J05005)
关键词 四阶微积分方程 紧差分格式 迭代算法 收敛性 稳定性 Keywords: fourth-order integro-differential equation compact difference scheme iterative algorithm convergence sta-bility
  • 相关文献

参考文献11

  • 1FEIREISL E.Exponential attractors for non-autonomous systems: Long-time behaviour of vibrating beams[J].Mathematical Methods in the Applied Sciences,1992,15(4):287-297.
  • 2SHIN J Y.Finite-element approximation of a fourth-order differential equation[J].Computers and Mathematics with Applications,1998,35(8):95-100.
  • 3OHM M R,LEE H Y,SHIN J Y.Error estimates of finite-element approximations for a fourth-order differential equation[J].Computers and Mathematics with Applications,2006,52(3/4):283-288.
  • 4DANG Q A,LUAN V T.Iterative method for solving a nonlinear fourth order boundary value problem[J].Computers and Mathematics with Applications,2010,60(1):112-121.
  • 5SEMPER B.Finite element methods for suspension bridge models[J].Computers and Mathematics with Applications,1993,26(5):77-91.
  • 6庄清渠,任全伟.一类四阶微积分方程的差分迭代解法[J].华侨大学学报(自然科学版),2012,33(6):709-714. 被引量:3
  • 7孙志忠.偏微分方程数值解法[M].北京:科学出版社,2012:13-15.
  • 8SHIDAMA Y.The Taylor expansions[J].Formalized Mathematics,2004,12(2):195-200.
  • 9SHERMAN A H.On Newton-iterative methods for the solution of systems of nonlinear equations[J].SIAM Journal on Numerical Analysis,1978,15(4):755-771.
  • 10DAVIS P J,RABINOWITZ P.Methods of numerical integration[M].New York: Dover Publications,2007:57-60.

二级参考文献12

  • 1DANG Q A, LET S. Iterative method for solving a problem with mixed boundary conditions for biharmonic equation [J]. Adv Appl Math Mech, 2009,1(5) : 683-698.
  • 2DANG Q A, LUAN V T. Iterative method for solving a nonlinear fourth order boundary value problem[J]. Computers and Mathematics with Applieations, 2010,60(1):112-121.
  • 3ZHUANG Qing-qu. A Legendre spectral-element method for the one-dimensional fourth-order equations[J]. Applied Mathematics and Computation, 2011,218(7) : 3587-3595.
  • 4KARMAN T, BlOT M A. Mathematical methods in engineering[M]. New York: McGraw-Hill, 1940.
  • 5SEMPER B. Finite element methods for suspension bridge models[J]. Computers and Mathematics with Applica- tions, 1993,26(5) : 77-91.
  • 6SEMPER B. Finite element approximation of a fourth order integro-differential equation[J]. Applied Mathematics Letters, 1994,7 (1) : 59-62.
  • 7BREZZI F, FORTIN M. Mixed and hybrid finite element methods[M]. New York:Springer-Verlag, 1991.
  • 8SHERMAN A H. On newton-iterative methods for the solution of systems of nonlinear equations[J]. SIAM Journal on Numerical Analysis, 1978,15(4) :755-771.
  • 9KUSRAEV A G. Discrete maximum principle[J]. Mathematical Notes, 1983,34(2) :617-620.
  • 10FEIREISI E. Exponential attractors for non-autonomous systems: Long-time behaviour of vibrating beams[J]. Mathematical methods in the applied sciences, 1992,15(4):287-297.

共引文献3

同被引文献4

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部