期刊文献+

向量测度的算子分解

Operator Decomposition of Vector Measures
下载PDF
导出
摘要 利用向量测度与算子的一一对应关系,给出可列可加测度的算子表示,并进一步由推广的YosidaHewitt定理证明定义在B(Ω,Σ)=span{χA,A∈Σ}上的取值于自反空间X的算子,可唯一分解成w*-范序列连续算子与纯连续算子之和. Using the isometrim between vector measures and operators, we give the operator representation for countably additive measures, then by applying extended Yosida-Hewitt theorem we show that a operator, which defined on B(Ω,Σ) =span{XA,A∈Σ} and valued in the reflexive Banach space, X can be uniquely decomposed into the sum of a ω*-norm sequentially continuous operator and a purely continuous operator.
出处 《华侨大学学报(自然科学版)》 CAS 北大核心 2014年第2期238-240,共3页 Journal of Huaqiao University(Natural Science)
基金 国家自然科学基金专项数学天元基金资助项目(11226129) 华侨大学高层次人才科研启动项目(10BS215)
关键词 ω*-范序列 连续算子 纯连续算子 向量测度 Yosida-Hewitt定理 ω*-norm sequentially continuous continuous operator purely continuous operator vector measures Yosi-da-Hewitt theorem
  • 相关文献

参考文献9

  • 1RUDIN W.Functional analysis[M].New York:Mc Graw-Hill Higher Education,1991:117-120.
  • 2DINCULEANU N.Linear operations on spaces of totally measurable functions[J].Rev Roumsine Math Pures Appl,1965(10):1493-1524.
  • 3GROTHENDIECK A.Sur les applications linéaires faiblement compactes D’espaces du type C(K)[J].Canada J Math,1953(5):129-173.
  • 4BARTLE R G,DUNFORD N,SCHWARTZ J.Weak compactness and vector measures[J].Canada J Math,1955(7):289-305.
  • 5DIESTEL J,UHL J J J.Vector measures[M].Rhode Island:American Mathematical Soliety,1977:59-186.
  • 6DAY M M.Normed linear spaces[M].New York:Springer-Verlag,1973:195-197.
  • 7YOSIDA K,HEWITT E.Finitely additive measures[J].Trans Amer Math Soc,1952,72(1):46-66.
  • 8DUNFORD N,SCHWARTZ J T.Linear operators part I[M].New York:John-Wiley and Sons,1958:318-319.
  • 9CHENG Li-xing,SHI Hui-hua.A functional characterization of measures and the Banach-Ulam problem[J].J Math Anal Appl,2011,374(2):558-565.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部