摘要
利用向量测度与算子的一一对应关系,给出可列可加测度的算子表示,并进一步由推广的YosidaHewitt定理证明定义在B(Ω,Σ)=span{χA,A∈Σ}上的取值于自反空间X的算子,可唯一分解成w*-范序列连续算子与纯连续算子之和.
Using the isometrim between vector measures and operators, we give the operator representation for countably additive measures, then by applying extended Yosida-Hewitt theorem we show that a operator, which defined on B(Ω,Σ) =span{XA,A∈Σ} and valued in the reflexive Banach space, X can be uniquely decomposed into the sum of a ω*-norm sequentially continuous operator and a purely continuous operator.
出处
《华侨大学学报(自然科学版)》
CAS
北大核心
2014年第2期238-240,共3页
Journal of Huaqiao University(Natural Science)
基金
国家自然科学基金专项数学天元基金资助项目(11226129)
华侨大学高层次人才科研启动项目(10BS215)