期刊文献+

循环图的Kirchhoff指标 被引量:1

The Kirchhoff index of circulant graphs
下载PDF
导出
摘要 图G的Kirchhoff指标定义为G中所有点对之间的电阻距离之和,记为Kf(G).图G为循环图,如果图G的邻接矩阵是循环矩阵;图G为整谱图,若它的特征值全为整数.该文利用循环图的Laplacian谱,讨论了循环图的Kirchhoff指标下界;借助Ramanujan和,利用Euler函数和Mobius函数,得到了一个关于整循环图的Kirchhoff指标的简便计算公式.这样无须求出整循环图的特征值,也可求整循环图的Kirchhoff指标. The Kirchhoff index,Kf(G),is the sum of resistance distances between all pairs of vertices in G.A graph G is called circulant graph if it has a circulant adjacency matrix.A graph G is called an integral graph if it has an integral spectrum.In this paper,using Laplacian spectrum of circulant graphs,we discuss and give a new lower bound for the Kirchhoff index.According to Ramanujan sums,applying the Euler function and the Mobius function,we obtain a simple formula for the Kirchhoff index of integral circulant graphs.Then we can calculate the Kirchhoff index,and we do not calculate its eigenvalues.
作者 周后卿 周琪
出处 《华中师范大学学报(自然科学版)》 CAS 北大核心 2014年第2期162-167,共6页 Journal of Central China Normal University:Natural Sciences
基金 湖南省自然科学基金项目(13JJ3118)
关键词 循环图 整循环图 LAPLACIAN特征值 KIRCHHOFF指标 circulant graphs integral circulant graphs Laplacian eigenvalues Kirchhoff index
  • 相关文献

参考文献19

  • 1Klein D J, Randic M. Resistance distance[J]. J Math Chem, 1993,12: 81-95.
  • 2Klein D J. Resistance distance sum rules[J]. Croat Chern Acta, 2002, 75:633-649.
  • 3Cserti J. Application of the lattice Green's function for calculating the resistance of an infinite network of resistors[J]. Am J Phys , 2002, 68: 896-906.
  • 4Mcrae B H, Dicksonl B G. Using circuit theory to model connectivity in ecology, evolution and conservation[J]. Ecology, 2008, 89:2712-2724.
  • 5Enrique B, Angeles C, Andres M E. A formula for the eirchhoff index [J]. Int J Quan Chern, 2008, 108: 1200-1206.
  • 6Chen H Y, Zhang F J. Resistance distance and the normalized Laplacian spectrum [J]. Disc Appl Math, 2007, 155: 654-661.
  • 7Chen H v , Zhang F J. Resistance distance local rules[J]. J of Math Chern, 2008, 44: 405-417.
  • 8Babic D, Klein D J, Lukovits 1. Resistance distance matrix: a computational algorithm and its application[J]. Int J Quantum Chem,2002, 90:166-176.
  • 9Xiao W J, Gutman 1. Resistance distance and Laplacian spectrum [J]. Theor Chern ACC, 2003, 110: 284-289.
  • 10Lukovits I, Nikolic S, Trinajstic N. Resistance distance in regular graphs [J]. Int J Quantum Chern, 1999, 71: 217-225.

二级参考文献2

同被引文献15

  • 1KLEIN D J,RANDILC M. Resistance distance[J]. Journal of Mathematical Chemistry, 1993,12(1):81-95.
  • 2BABIC D,KLEIN D J,LUKOVITS I,et al. Resistance distance matrix:a computational algorithm and its application[J]. Internati- onal Journal of Quantum Chemistry, 2002,90 ( 1 ) : 166-176.
  • 3PALACIOS J L. Closed form formulas for Kirchhoff index[J]. International Journal of Quantum Chemistry,2001,81 (2):135-140.
  • 4ZHANG H P, YANG Y J. Resistance distance and Kirchhoff index in circulant graphs[J]. International Journal of Quantum Chemistry, 2007,107 (2) : 330-339.
  • 5MERRIS R. Laplacian matrix of graphs: a survey[J]. Linear Algebra and its Applications, 1994(197/198):143-176.
  • 6GUTMAN I, MOHAR B. The Quasi Wiener and the Kirehhoff indices eoincide[J].Journal of Chemical Information and Computer Sciences, 1996,36 (5) : 982-985.
  • 7ZHU H Y, KLEIN D J, LUKOVITS I. Extensions of the Wiener number[J]. Journal of Chemical Information and Computer Sciences, 1996,36 (3) : 420-428.
  • 8张先迪,李正良.图论及其应用[M].北京:高等教育出版社,2011:1-68.
  • 9YANG Y L,YU T Y. Graph theory of viscoelasticities for polymers with starshaped,multiple-ring and cyclic multiple-ring molecules[J]. Makromolekulare Chernie, 1985,186 (3) : 609-631.
  • 10YANG Y J ,ZHANG H P. Kirchhoff index of linear hexagonal chains[J]. International Journal of Quantum Chemistry ,2008,108 (3) : 503-512.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部