期刊文献+

一种基于压缩域的实时跟踪改进算法 被引量:2

An Improved Real-time Tracking Algorithm Based on Compressed Domain
下载PDF
导出
摘要 在基于压缩域的实时跟踪算法中,判别函数对目标外观考虑不足易造成跟踪精度较低。为此,提出一种改进的基于压缩域的实时跟踪算法。利用稀疏测量矩阵提取候选目标的低维多尺度特征,并根据在线更新的特征概率分布,采用朴素贝叶斯分类器判别目标与背景,实现粗跟踪。通过视频帧间候选目标内部区域所具有的相似性,在粗跟踪的基础上实施基于动态目标外观模型的二次跟踪,在线寻找目标的最佳跟踪位置。对多种跟踪视频库的测试结果表明,该算法在不过量增加计算负荷的情况下能有效提高跟踪精度。 Aiming at the problem of low tracking precision caused by the discriminant function which has insufficient consideration for target appearance in the popular real-time tracking algorithm based on compressed domain, this paper proposes an improved algorithm. The low-dimensional multi-scale features of the candidate targets are extracted with a sparse measurement matrix. A Bayes classifier is adopted to discriminate the target and background according to online updating probability distribution of features, which realizes coarse tracking. On the basis of the coarse tracking result, the second tracking is carried out based on a dynamic appearance model of the target to search for the optimum tracking position online by measuring the local region similarity of the candidate targets between video frames. Test results for some challenging videos show that the proposed algorithm can improve the original tracking precision effectively without introducing too much computation.
出处 《计算机工程》 CAS CSCD 2014年第4期170-174,181,共6页 Computer Engineering
基金 国家自然科学基金资助项目(61102155) 三峡大学楚天学者基金资助项目(KJ2012B001) 三峡大学硕士培优基金资助项目(2013PY039)
关键词 压缩域 局部匹配 外观模型 实时跟踪 跟踪精度 二次跟踪 compressed domain local match appearance model real-time tracking tracking precision second tracking
  • 相关文献

参考文献13

  • 1侯志强,韩崇昭.视觉跟踪技术综述[J].自动化学报,2006,32(4):603-617. 被引量:255
  • 2杨戈,刘宏.视觉跟踪算法综述[J].智能系统学报,2010,5(2):95-105. 被引量:27
  • 3Black M, Jepson A. Eigentracking: Robust Matching and Tracking of Articulated Objects Using a View-based Representation[J]. International Journal of Computer Vision, 1998, 26(1 ): 63-84. J.
  • 4epson A, Fleet D, Maragbi T. Robust Online Appearance Models for Visual Tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25( 10): 1296-1311.
  • 5Ross D, Lim J, Lin R, et al. Incremental Learning for Robust Visual Tracking[J]. International Journal of Computer Vision, 2008, 77(1/3): 125-141.
  • 6Grabner H, Grabner M, Bischof H. Real-time Tracking via Online Boosting[C]//Proc. of British Machine Vision Conference. [S. 1.]: BMVA Press, 2006: 47-56.
  • 7Collins R, Liu Yanxi, Leordeanu M. Online Selection of Dis- criminative Tracking Features[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(10): 1631-1643.
  • 8Xue Mei, Ling Haibin. Robust Visual Tracking and Vehicle Classification via Sparse Representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(11): 2259-2272.
  • 9Babenko B, Yang M H, Belongie S. Robust Object Tracking with Online Multiple Instance Learning[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(8): 1619-1632.
  • 10Zhang Kaihua, Zhang Lei, Yang M H. Real-time Compressive Tracking[C]//Proc. of European Conference on ComputerVision. Florence, Italy: [s. n.], 2012: 866-879.

二级参考文献74

  • 1李培华,张田文.主动轮廓线模型(蛇模型)综述[J].软件学报,2000,11(6):751-757. 被引量:125
  • 2王东升,李在铭.空域视频场景监视中运动对象的实时检测与跟踪技术[J].信号处理,2005,21(2):195-198. 被引量:5
  • 3侯志强,韩崇昭.基于像素灰度归类的背景重构算法[J].软件学报,2005,16(9):1568-1576. 被引量:97
  • 4LI Shan,LEE M C.Fast visual tracking using motion saliency in video[C]//IEEE International Conference on Acoustics,Speech and Signal Processing(ICASSP 2007).Honolulu,USA,2007:1073-1076.
  • 5WREN C R,AZARBAYEJANI A,DARREL L,PENTLAND A P.Pfinder:real-time tracking of the human body[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1997,19(7):780-785.
  • 6YUAN Xiaotong,YANG Shutang,ZHU Hongwen.Region tracking via HMMF in joint feature-spatial space[C]//IEEE Workshop on Motion and Video Computing.(WACV/MOTIONS '05).Breckenridge,CO,USA,2005:72-77.
  • 7NICKELS K,HUTCHINSON S.Model-based tracking of complex articulated objects[J].IEEE Transactions on Robotics and Automation,2001,17(1):28-36.
  • 8LIN W C,LIU Yanxi.A lattice-based MRF model for dynamic near-regular texture tracking[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2007,29(5):777-792.
  • 9JANG D,CHOI H.Moving object tracking using active models[C]//International Conference on Image Processing(ICIP 98).Chicago,USA,1998:648-652.
  • 10WEN Zhen,HUANG T S.Enhanced 3-D geometric-model-based face tracking in low resolution with appearance model[C]//IEEE International Conference on Image Processing(ICIP 2005).Genoa,Italy,2005:350-353.

共引文献277

同被引文献11

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部