期刊文献+

基于流形学习的蒙赛尔颜色光谱分析

Spectral Analysis of Munsell Colors Based on Manifold Learning
下载PDF
导出
摘要 为描述颜色光谱所需的基本因子数量,从颜色光谱中提取颜色空间的结构,提出不同于传统线性降维的研究方法。从流形学习的视角出发,假设高维的颜色光谱数据位于一个低维的流形中,将颜色光谱分析中的基本因子数量问题和提取颜色空间结构问题,转化为光谱颜色空间内嵌流形的本征维数估计和流形结构分析问题。采用5种不同的流形本征维度估计算法和6种经典的流形学习算法,对蒙赛尔标准颜色样片光谱进行分析。实验结果表明,在光谱蒙赛尔颜色空间中存在三维的嵌入流形,这一流形的几何结构近似圆锥体,与蒙赛尔颜色系统的原始理论一致。 Aiming at the problem of the number of basic factors needed to describe the color spectral and the structure of color space exacted from the color spectral, this paper provides a new analysis method different from traditional linear techniques of dimension reduction, which is based on manifold learning, supposing high dimensional data of color spectral lies in a low dimensional manifold, transforming the problems of number of basic factors and the extracted structure of color space to the problems of the intrinsic dimension and structure of the embedded manifold of the spectral color space. Five different techniques of intrinsic dimension estimation and six classic manifold learning algorithms are employed to study the spectral dataset of Munsell colors. Experimental results reveal that there exists a 3-dimensional manifold embedded in the spectral Munsell color space and the geometric structure of this manifold looks like a cone, consistent with the original development of the Munsell color system.
出处 《计算机工程》 CAS CSCD 2014年第4期198-202,共5页 Computer Engineering
基金 国家自然科学基金资助项目(60903120) 国家"863"计划基金资助项目(2009AA01Z429) 上海市教委科研创新基金资助项目
关键词 颜色光谱 蒙赛尔颜色空间 光谱反射曲线 流形学习 本征维数 非线性降维 color spectral Munsell color space spectral reflectance curve manifold learning intrinsic dimension non-linear dimensionreduction
  • 相关文献

参考文献12

  • 1Cohen J. Dependency of the Spectral Reflectance Curves of the Munsell Color Chips[J]. Psychonomic Science, 1964, 1: 369-370.
  • 2Maloney L T. Evaluation of Linear Models of Surface Spectral Reflectance with Small Numbers of Parameters[J]. Journal of the Optical Society of AmericaA, 1986, 3(10): 1673-1683.
  • 3Maloney L T. Physics-based Approaches to Modeling Surface Color Perception[M]. Cambridge, UK: [s. n.], 1999.
  • 4Parkkinen J P S, Hallikainen J, Jaaskelainen T. Characteristic Spectra of Munsell Colors[J]. Journal of the Optical Society of AmericaA, 1989, 6(2): 318-322.
  • 5Jaaskelainen T, Parkkinen J, Toyooka S. Vector-subspace Model for Color Representation[J]. Journal of the Optical Society of America A, 1990, 7(4): 725-730.
  • 6Vrhel M. Measurement and Analysis of Object Reflectance Spectra[J]. Color Research & Application, 1994, 19(1): 4-9.
  • 7Romney A K, Indow T. Munsell Reflectance Spectra Represented in Three-dimensional Euclidean Space[J]. Color Research &Application, 2003, 28(3): 182-196.
  • 8Koenderink J J, van Doom A J. The Structure of Colorimetry[C]//Proc. of the 2nd International Workshop on Algebraic Frames for the Perception-action Cycle. London, UK: Springer-Verlag, 2000: 69-77.
  • 9Lenz R, Meer R Non-euclidean Structure of Spectral Color Space[C]//Proc. of International Society for Optics and Photonics on Industrial Lasers and Inspection. [S. 1.]: SPIE Press, 1999: 101-112.
  • 10Bums S A. The Munsell Color System in Fundamental Color Space[J]. Color Research & Application, 1990, 15(1): 29-51.

二级参考文献32

  • 1[1]HYVRINEN A.Survey on independent component analysis[J].Neural Computing Surveys,1999,2 (4):94-128.
  • 2[2]TURK M,PENTLAND A.Eigenfaces for recognition[J].Journal of Cognitive Neuroscience,1991,3 (1):71-86.
  • 3[3]GONZALEZ R C,WOODS R E.Digital image processing:2nd ed[M].Beijing:Publishing House of Electronics Industry,2003.
  • 4[4]SEUNG H S,LEE D D.The manifold ways of perception[J].Science,2000,290(5500):2268-2269.
  • 5[5]TENENBAUM J,SILVA D D,LANGFORD J.A global geometric framework for nonlinear dimensionality reduction[J].Science,2000,290(5500):2319-2323.
  • 6[6]ROWEIS S,SAUL L.Nonlinear dimensionality reduction by locally linear embedding[J].Science,2000,290(5500):2323-2326.
  • 7[9]ZHANG C S,WANG J,ZHAO N Y,ZHANG D.Reconstruction and analysis of multi-pose face images based on nonlinear dimensionality reduction[J].Pattern Recognition,2004,37(1):325-336.
  • 8[13]BELKIN M,NIYOGI P.Laplacian eigenmaps for dimensionality reduction and data representation[J].Neural Computation,2003,15(6):1373-1396.
  • 9[14]ZHANG Z Y,ZHA H Y.Principal manifolds and nonlinear dimensionality reduction via tangent space alignment[J].SIAM Journal of Scientific Computing,2005,26(1):313-338.
  • 10[15]SIMARD P Y,LECUN Y A,DENKER J S.Efficient pattern recognition using a new transformation distance[J].Advances in Neural Information Processing Systems,1993(5):50-58.

共引文献108

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部