期刊文献+

含气水合物沉积物弹塑性损伤本构模型探讨 被引量:26

A constitutive model coupling elastoplasticity and damage for methane hydrate-bearing sediments
下载PDF
导出
摘要 天然气水合物的开采会带来一系列的岩土工程问题,为了保障相关工程设施的安全,有必要建立一个合理的水合物沉积物本构模型。通过深入分析水合物沉积物力学特点,从颗粒间的作用机制出发,认为水合物沉积物的力学响应是沉积物中土体颗粒间摩擦与水合物胶结二者共同作用的结果;考虑到摩擦与接触特性不同的力学机制,分别采用修正剑桥模型和弹性损伤模型对土体骨架及水合物胶结的应力-应变关系进行描述;通过假定水合物胶结的损伤演化规律,并认为在受力变形过程中二者的应变始终相等,初步建立了一个水合物沉积物的弹塑性损伤本构模型。不同水合物饱和度沉积物应力-应变曲线的模型预测结果与室内三轴排水试验结果吻合良好,表明了所建模型的可行性和合理性。 The extraction of methane hydrate in the seabed will result in a series of geotechnical engineering problems and disasters. In order to ensure the safety of the related engineering facilities during the extraction, it is necessary to build reasonable constitutive model for methane hydrate bearing sediments. Based on the thorough study of the geomechanical characteristics of hydrate bearing sediments and the contacts between soil grains, the authors suppose that the geomechanical behavior of hydrate bearing sediments resulting from the combination of the friction between soil grains and cementation due to methane hydrate. Considering the different mechanical mechanisms of the friction and cementation, the modified Cam-clay model and elasticity damage model are employed to describe their mechanical responses respectively. By assuming that soil skeleton and cementation have the same strain during the loading, a constitutive model coupling elastoplasticity and damage for methane hydrate bearing sediments is then established based on a simplified damage evolution law. The calculated results are compared with the experimental data of methane hydrate bearing sediments with different hydrate saturations. It is shown that the proposed model can describe the stress-strain behavior of methane hydrate bearing sediments quite well, which demonstrates the validity and reasonability of this model.
出处 《岩土力学》 EI CAS CSCD 北大核心 2014年第4期991-997,共7页 Rock and Soil Mechanics
基金 国家自然科学基金资助(No.40972180)
关键词 含气水合物沉积物 修正剑桥模型 损伤 本构模型 methane hydrate bearing sediments modified Cam-clay model damage constitutive model
  • 相关文献

参考文献24

  • 1YAMANOTO K. Methane hydrate bearing sediments: a new subject of geomechanics[C]//The 12th International Conference of International Association for Computer Methods and Advances in Geomechanics (IACMAG). Goa: Curran Associates, Inc., 2008:1188- 1196.
  • 2MASUI A, HANEDA H, OGATA Y, et al. The effect of saturation degree of methane hydrate on the shear strength of synthetic methane hydrate sediments[C]//Proceedings of the 5th International Conference on Gas Hydrates. Trondheim: Tapir Academic Press, 2005: 657-663.
  • 3MIYAZAKI K, MASUI A, SAKAMOTO Y, et al. Triaxial compressive properties of artificial methane-hydrate- bearing sediment[J]. Journal of Geophysical Research, 2011, 116(B6): B06102. doi: 10.1029/2010JB008049.
  • 4张旭辉,王淑云,李清平,赵京,王爱兰.天然气水合物沉积物力学性质的试验研究[J].岩土力学,2010,31(10):3069-3074. 被引量:81
  • 5颜荣涛,韦昌富,魏厚振,田慧会,吴二林.水合物形成对含水合物砂土强度影响[J].岩土工程学报,2012,34(7):1234-1240. 被引量:46
  • 6BRUGADA J, CHENG Y P, SOGA K, et al. Discrete element modelling of geomechanical behaviour of methane hydrate soils with pore-filling hydrate distribution[J]. Granular Matter, 2010, 12: 517-525.
  • 7JUNG J W, SANTAMARINA J C, SOGA K. Stress-strain response of hydrate-bearing sands: Numerical study using discrete element method simulations[J]. Journal of Geophysical Research, 2012, 117(B4): B04202. doi: 10.1029/2011JB009040.
  • 8肖俞,蒋明镜,孙渝刚.考虑简化胶结模型的深海能源土宏观力学性质离散元数值模拟分析[J].岩土力学,2011,32(S1):755-760. 被引量:12
  • 9KLAR A, SOGA K, NG M Y A. Coupled deformation-flow analysis for methane hydrate extraction[J]. Geoteehnique, 2010, 60(10): 765-776.
  • 10KIMITO S, OKA F, FUSHITA T, et al. A chemo-thermo- mechanically coupled numerical simulation of the subsurface ground deformations due to methane hydrate dissociation[J]. Computers and Geotechnies, 2007, 34(4): 216-228.

二级参考文献113

共引文献586

同被引文献246

引证文献26

二级引证文献159

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部