期刊文献+

声发射信号诊断的膝盖骨性关节炎 被引量:1

Acoustic Emission Signals in the Diagnosis of Knee Osteoarthritis
下载PDF
导出
摘要 针对目前膝盖骨性关节炎(OA)发病率高,传统的诊断方法缺乏便携性,价格贵,存在放射性危害等局限性。该文提出了一种基于遗传算法优化BP神经网络的膝盖OA诊断。该方法以健康组和患病组为研究对象,将采集到的声发射(AE)信号通过遗传优化算法得到BP网络的最佳初始权值和阈值,利用BP神经网络对AE信号进行诊断分类。经实验室建立的膝盖OA声发射数据库的实验结果表明,该诊断方法效果好,误差小,能对膝盖OA患者进行实时检测和早期预测,具有临床价值。 Since the incidence of knee osteoarthritis (OA) is high, and the conventional diagnostic methods are non-portable, expensive and radiation damage etc. This paper proposes a diagnosis method of knee OA, which based on genetic algorithm to optimize the BP neural network. The proposed method takes the healthy group and disease group as the research object, and then makes use of the collected acoustic emission (AE) signal through genetic al- gorithm optimal BP network to obtain initial weights and threshold values, the BP neural network is used to classify the AE signals. The results of experimental knee OA acoustic emission database established by the laboratory show that the diagnostic method has well effect, small error, clinical value and to be able to real-time detection and early prediction of knee OA patients.
出处 《压电与声光》 CSCD 北大核心 2014年第2期302-305,310,共5页 Piezoelectrics & Acoustooptics
关键词 膝盖骨性关节炎 遗传算法 BP神经网络 声发射 诊断 knee osteoarthritis genetic algorithm ~ BP neural network acoustic emission ~ diagnose
  • 相关文献

参考文献6

  • 1SAROIU S,GUMMADI P K,GRIBBLE S D. A measurement study of peer-to-peer file sharing systems [C]/ /Washington , Proc of the Multimedia Computing and Networking 2002,MMCN 2002,2002:156-170.
  • 2MU T, NANDI A, RANGA YYAN R M. Screening of knee-joint vibroarthrographic signals using the strict 2- surface proximal classifier and genetic algorithm [J]. Computers in Biology and Medicine, 2008, 38 (2) : 1103-1111.
  • 3MASCARO B,PRIOR J ,SHARK L K,et al. Exploratory study of a non-invasive method based on acoustic emission for assessing the dynamic integrity of knee joints [J]. Medical Engineering and Physics, 2009,31 (3): 1013-1022.
  • 4史峰,王辉,郁磊.matlab智能算法30个案例分析EJ].北京航空航天大学:自然科学版,2010(12):27-37.
  • 5文福拴,韩祯祥,田磊,史觉玮,张怀宇.基于遗传算法的电力系统故障诊断的解析模型与方法──第一部分 : 模型与方法[J].电力系统及其自动化学报,1998,10(3):1-7. 被引量:79
  • 6李舜酩,许庆余.微弱振动信号的谐波小波频域提取[J].西安交通大学学报,2004,38(1):51-55. 被引量:41

二级参考文献3

共引文献118

同被引文献1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部