期刊文献+

一种改进的双变量收缩模型图像去噪 被引量:1

An improved image denoising method for bivariate shrinkage model
下载PDF
导出
摘要 针对噪声图像低频子带含有噪声的特点,给出了一种改进的局部自适应双变量收缩模型的图像去噪算法,对于高频子带用局部自适应双变量模型进行去噪,而对低频子带用具有局部自适应的高斯模型进行去噪。该算法既体现了尺度内的聚类性,又体现了尺度间的相关性且具有很好的局部自适应性,在实验中用离散小波变换进行去噪。实验结果表明,这种改进的算法无论从峰值信噪比,还是从主观视觉效果上都要优于传统的去噪算法。 An improved image denoising method for local adaptive bivariate shrinkage model is proposed in this paper ac-cording to the characteristics that the low-frequency subband of noise image contains noise. The high-frequency subband is de-noised by locally adaptive bivariate shrinkage model,and the residual low-frequency subband is denoised by locally adaptive Gaussian model. This method can reflect both the clustering performance of intra-scale and the correlation of inter-scale,and has good local adaptive property. The discrete wavelet transform was used to denoise in a experiment. The experimental results show the improved algorithm is more superior to the classical methods in both PSNR and subjective visual effect.
出处 《现代电子技术》 2014年第8期132-134,137,共4页 Modern Electronics Technique
关键词 图像去噪 小波变换 双变量收缩模型 局部自适应模型 image denoising wavelet transform bivariate shrinkage model locally adaptive model
  • 相关文献

参考文献6

  • 1CHANG S G, YU B, VETTERLI M, Spatially adaptive wavelet thresholding with context mode ling for image denoising [j]. IEEE Transactions on Information Theory, 2000, 9(9): 1522-1531.
  • 2MOULIN P, LIU J. Analysis of multiresolution image denoising schemes using generalized Gaussian and complexity priors [J]. IEEE Transactions on Imformation Theory, 1999, 45(3): 909-919.
  • 3CROUSE M S, NOWARK R D, BARANIUK R G. Wavelet-based statistical signal processing using hidden Markov models [J]. IEEE Transactions on Signal Processing, 1998, 46(4): 886-902.
  • 4KINGSBURY N. The dual-tree complex wavelet transform: a new efficient tool for image restoration and enhancement [C]// Proceeding of European Signal Processing Conference. Rhodes: [s.n.], 1998: 319-322.
  • 5谢杰成,张大力,徐文立.基于小波系数多尺度随机过程模型的去噪方法[J].清华大学学报(自然科学版),2003,43(9):1222-1225. 被引量:5
  • 6PAN Q, ZHANG P, Two denoising methods by wavelet trans- form [J]. IEEE Transactions on Signal Processing, 1999, 47 (12): 3401-3406,.

二级参考文献12

  • 1Donoho D L, Johnstone I M. Ideal spatial adaptation via wavelet shrinkage [J]. Biometrika, 1994, 81:425 - 455.
  • 2Basseville M, Benveniste A, Willsky A S. Multiscale autoregressive processes, part I and part II [J]. IEEE, Trans Signal Proc, 1992, 40(8) : 1915 - 1955.
  • 3Luettgen M R, Karl W C, Willsky A S, et al. Multiscale representations of Markov random fields [J]. IEEE Trans Signal Proc, 1993, 41(2) : 3377 - 3395.
  • 4Chou K C, WiUsky A S, Benveniste A. Multiscale recursive estimation, data Fusion, and regularization [J]. IEEE Trans Automatic Control, 1994, 39(3) : 464 - 478.
  • 5Luettgen M R, Karl W C, WiUsky A S. Efficient multiscale regualarization with applications to the computation of optical flow [J]. IEEE Trans Image Proc, 1994, 3(1): 41 -64.
  • 6Fieguth P W, Karl W C, Willsky A S, et al. Multiresolution optimal interpolation and statistical analysis of TOPEX/POSEIDON satellite altimetry [J]. IEEE Trans Geoscience and Remote Sensing, 1995, 31 ( 2 ) t 280 - 292.
  • 7Schneider M K, Fieguth P W, Karl W C, et al. Multiscale methods of the segmentation and reconstruction of signals and images [J]. IEEE Trans Image Proc, 2000, 9(3):456 - 468.
  • 8Irving W M, Fieguth P W, Willsky A S. Overlapping tree approach to multiscale stochastic modeling and estimation[J]. IEEE Trans Image Proc, 1997, 6(11): 1517 -1529.
  • 9Raueh H E, Tung F, Striebel C T. Maximum likelihood estimate of linear dynamic systems [J]. AIAA J, 1965,3(8) : 1445 - 1450.
  • 10Verghese G, Kailath T. A further note on backwards Markovian models [J]. IEEE Trans Info Theory, 1979,IT-25(1): 121-124.

共引文献4

同被引文献16

  • 1潘泉,孟晋丽,张磊,程咏梅,张洪才.小波滤波方法及应用[J].电子与信息学报,2007,29(1):236-242. 被引量:115
  • 2Mporas I,Tsirka V, Zacharaki E I, et al. Seizure Detection UsingEEG and ECG Signals for Computer-Based Monitoring, Analysisand Management of Epileptic Patients [J]. Expert Systems withApplications,2015,42(6) :3227-3233.
  • 3Donoho D L. De-Noising by Soft-Thresholding[J]. IEEE Transac-tions on Information Theory, 1995,41(3) :613-627.
  • 4Zhang X,Feng X,Wang W,et al. Image Denoising via 2D Diction-ary Learning and Adaptive Hard Thresholding [ J ]. Pattern Recog-nition Letters,2013,34( 16) :2110-2117.
  • 5Simoncelli E P. Bayesian Denoising of Visual Images |n th^i Wave-let Domain[M]. New York:Springer, 1999;291-308.
  • 6Cho D, Bui T D. Multivariate Statistical Modeling for Image De-noising Using Wavelet Transforms [J]. Signal Processing: ImageCommunication,2005,20( 1) : 77-89.
  • 7Sendur L’Selesnick I W. Bivariate Shrinkage Functions for Wave-let- Based Denoising Exploiting Interscale Dependency [j]. IEEETransactions on Signal Processing,2002,50( 11): 2744-2756.
  • 8Min D’Jiuwen Z, Yide M. Image Denoising via Bivariate Shrink-age Function Based on a New Structure of Dual Contourlet Trans-form[j]. Signal Processing,2015,109:25-37.
  • 9Sethunadh R, Thomas T. Spatially Adaptive Image Denoising Us-ing Inter-Scale Dependence in Directionlet Domain [j]. IET Im-age Processing ,2014,9(2) : 142-152.
  • 10Qin Y, Tang B, Wang J. Higher-Density Dyadic Wavelet Trans-form and Its Application [j]. Mechanical Systems and Signal Pro-cessing ,2010,24(3):823-834.

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部