期刊文献+

AS-Gorenstein辫子Hopf代数的Nakayama自同构

The Nakayama Automorphisms of AS-Gorenstein Braided Hopf Algebras
下载PDF
导出
摘要 假设代数R是一个AS-Gorenstein代数,同时R是H上的Yetter-Drinfeld模范畴中的一个分次辫子Hopf代数,其中H是一个有限维Hopf代数.通过比较代数R H和R的Nakayama自同构之间的关系,文章具体刻画了代数R的Nakayama自同构. Let R be an AS-Gorenstein algebra ,which is also a graded braided Hopf algebra in the category of Yetter-Drinfeld modules over H, where H is a finite dimensional Hopf algebra .By comparing the Nakayama automorphisms of RH and R ,the paper discribes the Nakayama automorphism of R explicitly.
作者 俞晓岚
出处 《杭州师范大学学报(自然科学版)》 CAS 2014年第2期181-185,共5页 Journal of Hangzhou Normal University(Natural Science Edition)
基金 国家自然科学青年基金项目(11301126) 国家自然科学数学天元基金项目(11226065) 浙江省自然科学青年基金项目(LQ12A01028) 杭州师范大学科研启动基金项目(2012QDL009)
关键词 辫子HOPF代数 AS-Gorenstein代数 刚性对偶复形 braided Hopf algebra AS-Gorenstein algebra rigid dual complex
  • 相关文献

参考文献8

  • 1Van den Bergh M, Existence theorems for dualizing complexes over non-commutative graded and filtered rings[J]. J Algebra, 1997,195 (2) :662-679.
  • 2Brown K A, Zhang J J. Dualizing complexes and twisted Hochschild (co)homology for Noetherian Hopf algebrasJ]. J Algebra,2008, 320(5) = 1814-1850.
  • 3Reyes M, Rogalski D, Zhang J J. Skew Calabi-Yau algebras and Homological identities[EB/OL]. [-2013 02-03]. http://arxiv, orgxiv. org/abs/1302. 0437.
  • 4Radford D. The structure of Hopf algebras with a projection[J] J. Algebra,1985,92(2):322-347.
  • 5Kirkman E, Kuzmanovich J, Zhang J J. Gorenstein subrings of invariants under Hopf algebra aetions[J]. J Algebra, 2009,322 (10) 3640-3669.
  • 6Fischman D, Montgomery S, Schneider H J. Frobenius extensions of subalgebras of Hopf algebras[J]. Trans Amer Math Soe, 1997 349:4857-4895.
  • 7Radford D. The order of the antipode of a finite-dimensional Hop{ algebra is finite[J]. Amer J Math, 1976,98:333 355.
  • 8Yu X L, Zhang Y H. The Calabi Yau property o{ smash products[J]..T Algebra,2012,358:189-214.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部