期刊文献+

推广的变体Boussinesq方程的新的周期波和孤子解

New Periodic Wave and Soliton Solutions of the Generalized Variant Boussinesq Equations
下载PDF
导出
摘要 利用雅可比椭圆函数法,求出了推广的变体Boussinesq方程的新的周期波和孤子解,并获得了极限情况下的部分有理解. This paper obtains the periodic wave and soliton solutions of the generalized variant Boussinesq equations are by using Jacobi elliptic function method ,are also gets some rational solutions in the limit cases .
出处 《杭州师范大学学报(自然科学版)》 CAS 2014年第2期192-197,共6页 Journal of Hangzhou Normal University(Natural Science Edition)
基金 浙江省自然科学基金项目(LY13A010020) 杭州师范大学科研基金项目(HNUEYT)
关键词 BOUSSINESQ方程 雅可比椭圆函数法 周期波 孤子解 Boussinesq equations Jacobi elliptic function method periodic wave soliton solutions
  • 相关文献

参考文献11

  • 1Ahdel Rady A S, Khater A H, Osman E S, etal. New period- ic wave and soliton solutions for system of coupled Korteweg- de Vries quations[J]. App Math and Comp,2009,207:406- 414.
  • 2Khalfallah M. Exact traveling wave solutions of the Bouss-inesq-Burgers equation [J], Math Comput Model, 2009,49: 666-671.
  • 3Wang M L. Solitary wave solution for variant Boussinesq equa- tions[J]. Phys Lett A,1995,199:169-172.
  • 4Wazwaz A M. Exact solutions of compact and noncompact structures for the KP-BBM equation[J]. Appl Math Comp, 2005,169:700 712.
  • 5Hirota R. Exact envolpe soliton solutions ot" a nonlinear wave equation[J]. J Math Phys,1973,14:805-810.
  • 6Fan E G. Extened tanh-function method and its application to nonlinear equations[J]. Phys Lett A, 2000,277 : 212-218.
  • 7Parkes E J, Duffy B R, Traveling solitary wave solution to a compound NdV-Burgers equation[J]. Phys Lett A,1997,229 217 22O.
  • 8Liu S K, Fu Z T, I.iu S D, et al, Jacobi elliptic function ex- pansion method and periodic wave solutions of nonlinear wave equations[J]. Phys Lett A,2001,289:69-74.
  • 9Otwinowski M, Paul R, Laidlaw W G. Exact traveling wave solutions of a class of nonlinear diffusion equations by reduc- tion to a quadrature[J]. Phys Lett A,1988,128:483-487.
  • 10Kara A H. Solitary wave solutions to some classes of nonlin ear evolution type equations using inverse variational methods [J]- Nonliear Anal (TMA),2007,67:3194 3198.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部