期刊文献+

一类带年龄结构周期型反应扩散种群系统的空间动力学 被引量:2

Spatial Dynamics on a Periodic Reaction-diffusion Population Model with Age-structure
原文传递
导出
摘要 研究了一类带年龄结构和扩散项的周期生物种群模型,通过对相应时滞微分系统的空间动力学讨论,证明其存在全局渐近稳定的正周期解.并利用单调周期半流理论,研究了反应扩散生物系统周期行波解和渐近波速c*的存在性,即:c〉c*时系统存在周期行波解,c〈c*时不存在连续的周期行波解. A class of periodic reaction-diffusion population model with age-structure and dispersal kernel is discussed in the paper. Via study on the spatial dynamics to the relative delay differential equations, we prove the the system admits an unique positive periodic so- lution, which is also globally asymptotically stable. By appealing to the theory of monotonic periodic semiflows, we establish the traveling wave solution and spreading speed c* with the periodic reaction-diffusion population model. That is, continuous periodic traveling wave exists when wave speed c 〉 c*, and nonsexists when c 〈 c*.
作者 王宗毅
机构地区 惠州学院数学系
出处 《应用数学学报》 CSCD 北大核心 2014年第2期343-355,共13页 Acta Mathematicae Applicatae Sinica
基金 国家自然科学基金(11226320) 广东省博士启动(S2011040003733)资助项目
关键词 空间动力学 单调系统 正周期解 周期行波解 渐近波速 spatial dynamics monotone system positive periodic solution periodic traveling wave solution spreading speed
  • 相关文献

参考文献16

  • 1Liang X, Yi Y F, Zhao X Q. Spreading Speeds and Traveling Waves for Periodic Evolution Systems. J. Differential Equations, 2006, 231:57-77.
  • 2Liang X, Zhao X Q. Asymptotic Speeds of Spread and Traveling Waves for Monotone Semiflows with Application. Commun. Pure Appl. Math., 2007, 60:1.-40.
  • 3Gourley A, Kuang Y. Wavefronts and Global Stability in a Time-delayed Population Model with Stage Structure. Proc. R. Soe. Lond. A, 2003, 459:1563-1579.
  • 4Jin Y, Zhao X Q. Spatial Dynamics of a Nonlocal Periodic Reaction-diffusion Model with Stage Structure. SIAM J. Math. Appl., 2009, 40:2496-2516.
  • 5Thieme H R, Zhao X Q. Asymptotic Speeds of Spread and Traveling Waves for Integral Equations and Delayed Reaction-diffusion Model. J. Differential Equations, 2003, 195:430-470.
  • 6Wang Z C, Li W T. Ruan S G. Traveling Wave Fronts in Reaction-Diffusion Systems with Spatio- temporal Delays. J. Differential Equations, 2006, 222:185-232.
  • 7Weng P X, Wu J H. Wavefronts for a Non-local Reaction-Diffusion Population Model with General Distributive Maturity. IMA J. Appl. Math., 2008, 73:477-495.
  • 8Zhao X Q, Xiao D M. The Asymptotic Speed of Spread and Traveling Waves for a Vector Disease Model. J. Dynam. Differ. Equat., 2006, 18:1001-1019.
  • 9Xu D S. Global Dynamics and Hopf Bifurcation of a Structured Population Model. Nonlinear Anal. Real World Appl., 2005, 6:461-476.
  • 10Aiello W C, Freedman H I. A Time-delay Model of Single Species Growth with Stage Structure. Math. Biosci., 1990, 101:139-153.

同被引文献12

  • 1Gabriella D B,Alfredo L.An identification problem in age-Dependent population diffusion[J].Numerical Functional Analysis and Optimization,2013,34(1):36-73.
  • 2Liao Wenyuan,Mehdi D,Akbar M.Direct numerical method for an inverse problem of a parabolic parical differential equation[J].Journal of Computational and Applied Mathematics,2009,3232:351-360.
  • 3Liu Songshu,Feng Lixin.A modified kernel method for atime-fractional inverse diffusion problem[J].Advances in Difference Equations,2015,342:1-11.
  • 4Abeeb A A,Ryad A G,Nasser-eddine T.Artificial boundary condition for a modifiedfractional diffusion problem[J].Boundry Value Problems,2015,20:1-17.
  • 5Ebru O,Ali D.Inverse problem for a time-fractionalparabolic equation[J].Journal of Inequalities,2015,81:1-9.
  • 6Xiao Cuie.Optimization method for the inverse coefficient problem of a parabolic equation[J].Procedia Engineering,2011,15:4880-4884.
  • 7Fabien T,Prabir D,Oscar O.On an inverse problem:Recovering of non-smooth solutions to backward heat equation[J].Applied Mathematical Modelling,2012,36:4003-4019.
  • 8Yang Liu,Deng Zuicha,Yu Jianning,et al.Optimazation method for the inverse problem of reconstructing the souse term in a parabolic equation[J].Mathematics and Computers in Simulatin,2009,80:314-326.
  • 9戴晓娟,张启敏.非线性随机种群系统的最优控制[J].昆明理工大学学报(理工版),2009,34(3):100-104. 被引量:5
  • 10蒋小平,付娟,王旭,韩廷祥,魏立彬.迟后时滞系统Pade等效式的最佳阶次分析研究[J].科学技术与工程,2015,35(2):108-113. 被引量:4

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部