期刊文献+

多介质大变形扩散问题的一种简单高精度算法 被引量:1

A Simple and High Accurate Algorithm for Diffusion Problem in Multi-material on Large Distortion Meshes
原文传递
导出
摘要 在扩散方程基于单元中心量的大变形网格离散方法中,大部分算法都直接或者间接用到了单元节点量,其中更有一些方法的成败直接决定于单元节点量计算的好坏,如在实际中应用非常广泛的九点格式等.本文利用孪生逼近方法在处理间断扩散系数问题上的优势,发展了一种基于三角形子网格的简单高精度节点量计算方法,并应用该方法于九点格式.数值算例表明,新九点格式在大变形网格上和间断扩散系数处的精度与常系数扩散方程在正方形网格上的五点格式相当,近似二阶精度. Among the methods with cell-centered unknowns on large distortion meshes, most adopt the vertex unknowns directly or indirectly, and the accuracy of some methods such as the nine-point scheme is ultimately determined by the approximation to the vertex unknowns. In this paper, taking advantage of the high-order accuracy of the "twin-fitting" method especially on discontinuous diffusion coefficients, a new treatment for the vertex unknowns is developed to apply to a nine-point scheme. Numerical experiments show that the new nine-point scheme has almost second order accuracy on distorted meshes and on discontinuous diffusion coefficients.
出处 《应用数学学报》 CSCD 北大核心 2014年第2期367-378,共12页 Acta Mathematicae Applicatae Sinica
基金 国家自然科学基金(11001024 91130021 10931004)资助项目
关键词 间断扩散系数 大变形网格 节点量计算 孪生逼近 discontinuous diffusion coefficient large distortion meshes the treatment for the vertex unknowns "twin-fitting" method
  • 相关文献

参考文献22

  • 1Kershaw D S. Differencing of the Diffusion Equation in Lagrangian Hydrodynamic Codes. J. Comput. Phys., 1981, 39:375-395.
  • 2Morel J E, Dendy J E, Hall M L, White S W. A Cell-centered Lagrangian-mesh Diffusion Differencing Scheme. J. Comput. Phys., 1992, 103:286-299.
  • 3Shashkov M J, Steinberg S. Solving Diffusion Equation with Rough Coefficients in Rough Grids. J. Comput. Phys., 1996, 129:383-405.
  • 4Shashkov M J. Conservative Finite-difference Methods on General Grids. CRC Press, Boca Raton, FL., 1996.
  • 5Morel J E, Roberts R M, Shashkov M J. A Local Support-operators Diffusion Discretization Scheme for Quadrilateral r-z Meshes. Y. Comput. Phys., 1998, 144:17 51.
  • 6Hermeline F. A Finite Volume Method for the Approximation of Diffusion Operators on Distorted Meshes. J. Comput. Phys., 2000, 160:481-499.
  • 7Hermeline F. Approxiamtion of 2-D and 3-D Diffusion Operators with Variable Full Tensor Coefficients on Arbitrary Meshes. Comput. Meth. Appl. Mech. Engrg., 2007 196:2497-2526.
  • 8Zhukov V T, Feodoritova O B. Difference Schemes for the Heat Condunction Equation Based on Local Least-squares Approximations. Preprint No. 97, IPMathem. Akad. Nauk S.S.S.R., Moscow, 1989.
  • 9Aavatsmark I, Barkve T, Bee O, Aannseth T. Discretization on Unstructured Grids for Inhomoge- neous, Anisotropic Media. Part I: Derivation of the Methods. SIAM J. Sci. Comput., 1998, 19 : 1700-1716.
  • 10Aavatsmark I, Barkve T, Bee O, Aannseth T. Discretization on Unstructured Grids for Inhomoge- neous, Anisotropic Media. Part II: Discussion and Numerical Results. SIAM J. Sci. Comput., 1998, 19:1717-1736.

二级参考文献32

  • 1Lipnikov K, Shashkov M, Yotov I. Local Flux Mimetic Finite Difference Methods. Technical Report LA-UR-05-8364, Los Alamos National Laboratory, 2005.
  • 2Li D Y, Chen G N. An Introduction to Difference Methods of Parabolic Equations. Beijing: Science Press, 1995.
  • 3Hermeline F. A Finite Volume Method for the Approximation of Diffusion Operators on Distorted Meshes. J. Comput. Phys., 2000, 160:481-499.
  • 4Hermeline F. Approxiamtion of 2-D and 3-D Diffusion Operators with Variable Full Tensor Coefficients on Arbitrary Meshes. Comput. Meth. Appl. Mech. Engrg., 2007, 196:2497-2526.
  • 5Zhukov V T, Feodoritova O B. Difference Schemes for the Heat Condunction Equation Based on Local Least-squares Approximations. Preprint No. 97, IPMathem. Akad. Nauk S.S.S.R., Moscow, 1989.
  • 6Aavatsmark I, Barkve T, Bee φ, Aannseth T. Discretization on Unstructured Grids for Inhomogeneous, Anisotropic Media. Part I: Derivation of the Methods. SIAM J. Sci. Comput., 1998, 19: 1700-1716.
  • 7Aavatsmark I, Barkve T, Bφe φ, Aannseth T. Discretization on Unstructured Grids for Inhomogeneous, Anisotropic Media. Part II: Discussion and Numerical Results. SIAM J. Sci. Comput., 1998, 19:1717-1736.
  • 8Aavatsmark I. An Introduction to Multipoint Flux Approximations for Quadrilateral Grids. Comput. Geosci., 2002, 6:405 432.
  • 9Samarskii A A. The Theory of Difference Schemes. Marcel Dekker. Inc.: New York-Basel, 2001.
  • 10Kershaw D S. Differencing of the Diffusion Equation in Lagrangian Hydrodynamic Codes. J. Comput. Phys., 1981, 39:375-395.

共引文献15

同被引文献3

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部