期刊文献+

分子动力学和丙氨酸变异研究MDM2与抑制剂P4的结合模式 被引量:1

Insight into binding mode of inhibitor P4 to MDM2 based on molecular dynamics and alanine mutation calculations
下载PDF
导出
摘要 抑制p53-MDM2相互作用已经成为癌症治疗的新途径.采用分子动力学模拟和MM-PBSA(molecular mechanics-Possion-Boltzmann surface area)方法研究了肽类抑制剂P4与MDM2的结合模式.研究表明P4与MDMD2疏水性裂缝的范德华作用是抑制剂结合的主导力量。采用丙氨酸变异计算研究了P4与MDM2的作用热区.结果表明残基Lys51,Leu54,Leu57,Ile61,Met62,Tyr67,Gln72,His73,Val93,His96和Ile99的丙氨酸变异导致了范德华作用的降低,而对极性相互作用几乎没有产生影响,同时也证明这些残基处于P4与MDM2作用表面的热区,对抑制剂的结合有重要贡献,这能为抗癌药物的设计提供理论上的指导. Inhibition of p53-MDM2 interaction has been a new approach curing cancers.Molecular dynamics simulation coupled with molecular mechanics-Poisson-Boltzmann surface area (MM-PBAS) method was performed to study the binding mode of inhibitor P4 to MDM2.The results show that van der Waals interactions of P4 with the hydrophobic cleft of MDM2 drive inhibitor binding.Computational alanine scanning mutagensis was adopted to explore the hot spots of P4-MDM2 interaction.The results suggest that alanine mutations of residues Lys51,Leu54,Leu57,Ile61,Met62,Tyr67,Gln72,His73,Val93,His96 and Ile99 from MDM2 lead to a big decrease in van der Waals energy,but hardly produce effects on polar interactions.At the same time,this result also proves that these residues locate in the hot spots of interaction surface between P4 and MDM2,and provide important contributions to inhibitor binding.This study can provide significant helps for anti-cancer drug designs.
出处 《原子与分子物理学报》 CAS CSCD 北大核心 2014年第2期311-316,共6页 Journal of Atomic and Molecular Physics
基金 国家自然科学基金(11104164 11274206 31200545) 山东省自然科学基金(ZR2011HM048) 山东交通学院博士启动资金和校自然基金
关键词 分子动力学 丙氨酸变异 MM-PBSA p53-MDM2相互作用 Molecular dynamics Computational alanine scanning mutagensis MM-PBSA p53-MDM2 interaction
  • 相关文献

参考文献20

  • 1Chine P. Inhibiting the p53-MDM2 interaction: an important target for cancer therapy [J]. Nat. Rev. Cancer. 2003, 3.. 102.
  • 2Joseph T L, Madhumalar A, Brown C J, et al. Dif-ferential binding of p53 and nutlin to MDM2 and MDMX.- Computational studies [J]. Cell. Cycle, 2010, 9: 1167.
  • 3Haupt Y, Maya R, Kazaz A, et al. Mdm2 promotes the rapid degradation of p53 [J]- Nature, 1997, 387 .. 296.
  • 4Popowicz G M, Czarna A, Wolf S. Structures of low molecular weight inhibitors bound to MDMX and MDM2 reveal new approaches for p53-MDMX/ MDM2 antagonist drug discovery [J]. Cell. Cycle, 2010, 91 1104.
  • 5Pazgier M, Liu M, Zou G, et al. Structural basis for high-affinity peptide inhibition of p53 interactions with MDM2 and MDMX [J]. Proc. Natl. Acad. Sci. USA, 2009, 106.. 4665.
  • 6Czarna A, Popowicz G M, Pecak A, et al. High af- finity interaction of the p53 peptide-analogue with human Mdm2 and Mdmx [J]. Cell. Cycle, 2009, 8: 1176.
  • 7Massova I, Kollman P A. Computational alanine scanning to probe protein-protein interactions: a no- vel approach to evaluate binding free energies [J]. J. Am. Chem. Soc. , 1999, 121: 8133.
  • 8Chen J, Zhang D, Zhang Y, et al. Computational studies of difference in binding modes of peptide and non-peptide inhibitors to MDM2/MDMX based on molecular dynamics simulations [J]. Int. J. Mol. Sci. , 2012, 13: 2176.
  • 9Wang W, Lim W A, Jakalian A, etal. An analysis of the interactions between the Sem-5 SH3 domain and its ligands using molecular dynamics, free energy calculations, and sequence analysis [J]. J. Am. Chem. Soc. , 2001, 123: 3986.
  • 10Wang J, Morin P, Wang W, etal. Use of MM-PB- SA in reproducing the binding free energies to HIV- 1 RT of TIBO derivatives and predicting the binding mode to HIV-1 RT of efavirenz by docking and MM-PBSA [J]. J. Am. Chem. Soc., 2001, 123: 5221.

二级参考文献70

  • 1蒋勇军,曾敏,周先波,邹建卫,俞庆森.CDK2-抑制剂结合自由能计算[J].化学学报,2004,62(18):1751-1754. 被引量:11
  • 2胡建平,孙庭广,陈慰祖,王存新.谷氨酰胺结合蛋白的分子动力学模拟和自由能计算[J].化学学报,2006,64(20):2079-2085. 被引量:12
  • 3Renaud J P,Moras D.Structural studies on nuclear receptors[J].Cell.Mol.Life.Sci.,2000,57:1748.
  • 4Pasqualini J R,Paris J,Sitruk-Ware R,et al.Progestins and breast cancer[J].J.Steroid.Biochem.Mo.l Biol.,1998,65:225.
  • 5Jin H X,Wu T X,Jiang Y J,et al.Functional role of three water molecules buried within catalytic subunit of cyclic 30,50-adenosine monophosphate-dependent protein kinase[J].J.Mol.Struct.(Theochem),2007,809:21.
  • 6Hu G D,Zhu T,Zhang S L,Wang D,et al.Some insights into mechanism for binding and drug resistance of wild type and I50V V82A and I84V mutations in HIV-1 protease with GRL-98065 inhibitor from molecular dynamic simulations[J].Eur.J.Med.Chem.,2010,45:227.
  • 7Xu Y,Wang R X.A computational analysis of the binding affinities of FKBP12 inhibitors using the MM-PB/SA method[J].Proteins.,2006,64:1058.
  • 8Williams S P,Sigler P B.Atomic structure of progesterone complexed with its receptor[J].Nature,1998,393:392.
  • 9Case D A,Darden T A,Cheatham II T E,et al.2006,AMBER 9,University of California,San Francisco.
  • 10Kollman P A,Massova I,Reyes C,et al.Calculating structures and free energies of complex molecules:combining molecular mechanics and continuum models[J].Acc.Chem.Res.,2000,33:889.

共引文献13

同被引文献20

  • 1Egelrud T, Brattsand M, Kreutzmann P, et al. hK5 and hK7, two serine proteinases abundant in human skin, are inhibited by LEKTI domain 6 [ J ]. Bright. J. Dermatol. , 2005, 153: 1200.
  • 2Mitsudo K, Jayakumar A, Henderson Y, et al. Inhibition of serine proteinases plasmin, trypsin, subtilisin A, cathepsin G, and elastase by LEKTI: a kinetic analysis [ J]. Biochemistry, 2003, 42 : 3874.
  • 3Yamane J, Yao M, Zhou Y, et al. In -crystal affinity ranking of fragment hit compounds reveals a relationship with their inhibitory activities [ J ]. J. Appl. Crystallog. , 2011,44 : 798.
  • 4Liebschner D, Dauter M, Brzuszkiewicz A, et al. On the reproducibility of protein crystal structures: five atomic resolution structures of trypsin [ J ] . Acta Crystallog. D: Biolog. Crystallog., 2013, 69: 1447.
  • 5Zhang H M, Wang Y Q, Zhou Q H. Investigation of the interactions of quercetin and morin with trypsin[J]. Luminescence, 2009, 24: 355.
  • 6Chen J, Wang J, Zhang Q, et al. A comparative study of trypsin specificity based on QM/MM molecular dynamics simulation and QM/MM GBSA calculation [J]. J. Biomol. Stuct. Dyn. , 2015: DOI:10. 1080/ 07391102. 2014. 1003146.
  • 7Chen J, Liang Z, Wang W, et al. Revealing origin of decrease in potency of darunavir and amprenavir against HIV -2 relative to HIV -1 protease by molecular dynamics simulations [J]. Sci. Rep. , 2014, 4: 6872.
  • 8Zhu T, Xiao X, Ji C, et al. A new quantum calibrated force field for zinc - protein complex [ J ]. J. Chem. Theory Comput. , 2013, 9:1788.
  • 9Wang J, Yang H, Zuo Z, et al. Molecular dynamics simulations on the mechanism of transporting methylamine and ammonia by ammonium transporter A mt B [ J ]. J. Phys. Chem. B, 2010, 114: 15172.
  • 10Wu E L, Mei Y, Han K L, et al. Quantum andmolecular dynamics study for binding of macrocyclic inhibitors to human [ alpha] -thrombin [ J]. Biophys. J, 2007, 92: 4244.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部