期刊文献+

系列过表达非氧化磷酸戊糖途径基因对重组酿酒酵母菌株木糖代谢的影响 被引量:1

Effects of systematic overexpression of genes involved in the non-oxidative pentose phosphate pathway on xylose metabolism of recombinant Saccharomyces cerevisiae strains
原文传递
导出
摘要 【目的】通过系统研究一个、两个及多个非氧化磷酸戊糖(PP)途径基因组合过表达对酿酒酵母木糖代谢的影响,以优化重组菌株的构建过程,构建高效的木糖代谢酿酒酵母菌株。【方法】在酿酒酵母中双拷贝过表达上游代谢途径的关键酶(木糖还原酶XR,木糖醇脱氢酶XDH,木酮糖激酶XKS),在此基础上构建了一系列PP途径基因过表达菌株,并对其木糖发酵性能进行比较研究。【结果】木糖发酵结果显示,不同组合过表达PP途径基因能不同程度改善重组菌株的木糖发酵性能。其中,过表达PP途径全部基因(RKI1,RPE1,TAL1和TKL1)使菌株的发酵性能最优,其乙醇产率和产量较对照菌株分别提高了39.25%和12.57%,同时较其他基因组合过表达菌株也有不同程度的改善。【结论】通过构建PP途径基因不同组合过表达酿酒酵母菌株,首次对PP途径基因对酿酒酵母木糖代谢的影响进行了系统研究,结果表明,不同组合强化PP途径基因对重组菌株木糖代谢的影响存在差异,相对于其他基因过表达组合,同步过表达PP途径全部基因最有利于碳通量流向乙醇。 [Objective] Construction of highly efficient xylose-utilizing Saccharomyces cerevisiae strains by single, double or multiple overexpression of genes involved in the non-oxidative pentose phosphate (PP) pathway. [Methods] TAL1, TKL1, RPE1 and RKI1 under the control of different strong promoters were integrated either alone or in combination into the xyloses-fermenting recombinant yeast strain AYHNEW2. The fermentation performances of the resulting strains were studied on 5% xylose. [Results] The recombinant strains generated with our approach showed improved xylose fermentation performance with varying degrees. The best results were obtained by simultaneous overexpression of all the non-oxidative PP pathway genes, and compared to the reference strain AYHNEW2, the strain resulted from this genetic modification showed a 39.25% and 12.57% increase in ethanol productivity and yield, respectively. [Conclusion] Previous studies for enhancing xylose fermentation rate by genetic modification of the non-oxidative PP pathway had been more focused on overexpression of the individual genes in the pathway. In this work, we demonstrated that, compared to single or partial over-expression of the non-oxidative PP pathway, simultaneous overexpression of all the genes in the pathway was more effective in increasing the rate of carbon flow from xylose to ethanol.
出处 《微生物学通报》 CAS CSCD 北大核心 2014年第4期592-600,共9页 Microbiology China
关键词 酿酒酵母 非氧化磷酸戊糖途径 木糖 乙醇 Saccharomyces cerevisiae, Non-oxidative pentose phosphate pathway, Xylose, Ethanol
  • 相关文献

参考文献20

  • 1沈煜,郑华军,王颖,鲍晓明,曲音波,白凤武.木酮糖激酶表达水平对酿酒酵母木糖代谢产物流向的影响[J].生物化学与生物物理进展,2004,31(8):746-751. 被引量:11
  • 2Parachin NS, Bergdahl B, van Niel EW, et al. Kinetic modelling reveals current limitations in the production ofethanol from xylose by recombinant Saccharomyces cerevisiae[J]. Metabolic Engineering, 2011, 13(5): 508-517.
  • 3Klimacek M, Krahulec S, Sauer U, et al. Limitations in xylose-fermenting Saccharomyces cerevisiae, made evident through comprehensive metabolite profiling and thermodynamic analysis[J]. Applied and Environmental Microbiology, 2010, 76(22): 7566-7574.
  • 4Johansson B, Hahn-Higerdal B. The non-oxidative pentose phosphate pathway controls the fermentation rate of xylulose but not of xylose in Saccharomyces cerevisiae TMB300I[J]. FEMS Yeast Research, 2002, 2(3): 277-282.
  • 5Blank LM, Lehmbeck F, Sauer U. Metabolic-flux and network analysis in fourteen hemiascomycetous yeasts[J]. FEMS Yeast Research, 2005, 5(6/7): 545-558.
  • 6Wahlbom CF, Cordero Otero RR, van Zyl WH, et al. Molecular analysis of a Saccharomyces cerevisiae mutant with improved ability to utilize xylose shows enhanced expression of proteins involved in transport, initial xylose metabolism, and the pentose phosphate pathway[J]. Applied and Environmental Microbiology, 2003, 69(2): 740-746.
  • 7Hasunuma T, Sanda T, Yamada R, et al. Metabolic pathway engineering based on metabolomics confers acetic and formic acid tolerance to a recombinant xylose-fermenting strain of Saccharomyces cerevisiae[J]. Microbial Cell Factories, 2011, 10(1): 2-13.
  • 8Metzger M, Hollenberg C. Isolation and characterization of the Pichia stipitis transketolase gene and expression in a xylose-utilising Saccharomyces cerevisiae transformant[J]. Applied Microbiology and Biotechnology, 1994, 42(2): 319-325.
  • 9Walfridsson M, Hallbom J, Penttili M, et al. Xylose-metabolizing Saccharomyces cerevisiae strains overexpressing the TKL1 and TALl genes encoding the pentose phosphate pathway enzymes transketolase and transaldolase[J]. Applied and Environmental Microbiology, 1995, 61(12): 4184-4190.
  • 10Miosga T, Zimmermann FK. Cloning and characterization of the first two genes of the non-oxidative part of the Saccharomyces cerevisiae pentose-phosphate pathway[J]. Current Genetics, 1996, 30(5): 404-409.

二级参考文献12

  • 1[1]Nancy H, Zhengdao C, Adam P B. Genetically engineered Saccharomyces cerevisiae yeast capable of effective cofermentation of glucose and xylose. Appl Environ Microbiol, 1998, 64 (5):1852 ~ 1859
  • 2[2]Walfridsson M, Anderlund M, Bao X, et al. Expression of different levels of enzymes from the Pichia stipitis XYL1 and XYL2genes in Saccharomyces cerevisiae and its effects on product formation during xylose utilisation. Appl Microbiol Biotechnol, 1997, 48(2): 218 ~224
  • 3[3]Walfridsson M, Bao X, Anderlund M, et al. Ethanolic fermentation of xylose with Saccharomyces cerevisiae harboring the Thermus thermophilus xylA gene which expresses an active xylose (glucose) isomerase. Appl Environ Microbiol, 1996, 62 (12):4648 ~4651
  • 4[4]Walfridssion M, Hallbom J, Penttil M, et al. Xylose metabolising Saccharomyces cerevisiae overexpressing the TKL1 and TAL1 genes encoding the pentose phosphate pathway enzymes transketolase and transaldolase. Appl Environ Microbiol, 1995, 61 (2): 4184~4190
  • 5[5]Anna E, Camilla C, Fredrik W, et al. Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1,XYL2, and XKS1 in mineral medium chemostat cultures. Appl Environ Microbiol, 2000, 66 (8): 3381~3386
  • 6[6]Hallborn J, Gorwa M F, Meinander N, et al. The influence of cosubstrate, and aeration on xylitol formation by recombinant Saccharomyces cerevisiae expressing the XYL1 gene. Appl Microbiol Biotechnol, 1994, 42 (2 ~3): 326~333
  • 7[7]Dekker K A, Yamagata H, Sakaguchi K, et al. Xylose (glucose)isomerase gene from the Thermophile thermus thermophilus: loning,sequencing and comparison with other thermostable xylose isomerase. J Bacteriol, 1991, 173 (10): 3078~3083
  • 8[9]Blomqvist K, Suihko M L, Knowles J, et al. Chromosomal integration and expression of two bacterial c-acetolactate decarboxylase genes in brewer's yeast. Appl Environ Microbiol,1991, 57 (10): 2796~2803
  • 9[10]Mellor J, Dobson M J, Roberts N A, et al. Efficient synthesis of enzymatically active calf chymosin in Saccharomyces cerevisiae.Gene, 1983, 24 (1): 1~14
  • 10[11]Smiley K L, Bolen P L. Demonstration of D-xylose reductase and D-xylitol dehydrogenase in Pachysolen tannophilus. Biotechnol Lett,1982, 4 (8): 607~610

共引文献10

同被引文献43

  • 1李敏,马涛,生举正,郭亭,鲍晓明.稳定高效表达木糖还原酶基因工业酿酒酵母的构建及木糖醇发酵的初步研究[J].食品与发酵工业,2006,32(1):1-5. 被引量:13
  • 2van Vleet J H, Jeffries T W. Yeast metabolic engineering for hemicellulosic ethanol production. Curr Opin Biotech, 2009, 20: 300-306.
  • 3Diao L Y,, Liu Y M, Qian F H, et al. Construction of fast xylose-fermenting yeast based on industrial ethanol-producing diploid Saccharomyces cerevisiae by rational design and adaptive evolution. BMC Biotechnol, 2013: 13.
  • 4Peng B, Shen Y, Li X, et al. Improvement of xylose fermentation in respiratory-deficient xylose- fermenting Saccharomyces cerevisiae. Metab Eng, 2012, 14: 9-18.
  • 5Shen Y, Chen X, Peng B Y, et al. An efficient xylose-fermenting recombinant Saccharomyces cerevisiae strain obtained through adaptive evolution and its global transcription profile. Appl Microbiol Biot, 2012, 96: 1079-1091.
  • 6Khattab S M R, Saimura M, Kodaki T. Boost in bioethanol production using recombinant Saccharomyces cerevisiae with mutated strictly NADPH-dependent xylose reductase and NADP(+)-dependent xylitol dehydrogenase. J Biotechnol, 2013, 165: 153-156.
  • 7Lee S H, Kodaki T, Park Y C, et al. Effects of NADH-preferring xylose reductase expression on ethanol production from xylose in xylose- metabolizing recombinant Saccharornyces cerevisiae. J Biotechnol, 2012, 158: 184-191.
  • 8Hou J, Vemuri G N, Bao X M, et al. Impact of overexpressing NADH kinase on glucose and xylose metabolism in recombinant xylose-utilizing Saccharomyces cerevisiae . Appl Microbiol Biot, 2009, 82: 909-919.
  • 9Zhang G C, Liu J J, Ding W T. Decreased xylitol formation during xylose fermentation in Saccharomyces cerevisiae due to overexpression of water-forming NADH oxidase. Appl Environ Microb, 2012, 78:1081-1086.
  • 10Hou J, Suo F, Wang C, et al. Fine-tuning of NADH oxidase decreases byproduct accumulation in respiration deficient xylose metabolic Saccharomyces cerevisiae . BMC Bioteebnol, 2014, 14: 13.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部