期刊文献+

基于速度概率和自适应速度值的差分进化算法 被引量:4

Improved binary differential evolution algorithm based on velocity probability and adaptive speed value
下载PDF
导出
摘要 针对于离散差分进化算法在问题规模较大情况下难以找到全局最优值和收敛速度慢的问题,通过引入速度概率和自适应速度值,提出了一种改进的二进制差分进化算法。通过理论推导,改进的差分进化算法可以有效提高离散差分进化算法对于复杂问题的全局最优值搜索能力和收敛速度。在使用经典0-1背包问题进行的实验中,验证了理论推导的结论正确性以及改进的差分进化算法可行性。 Aiming to discrete differential evaluation algorithm difficult to find the global optimization value and slow in conver- gence rate in large-scale problem, by introducing the velocity probability and adaptive speed value, an improved differential evolu- tion algorithm based on velocity probability and adaptive speed value is proposed. Though theoretical derivation, the correctness of improved discrete binary differential evolution algorithm is proofed. The result of the theoretical derivation is verified by the experiment.
出处 《计算机工程与设计》 CSCD 北大核心 2014年第4期1395-1401,共7页 Computer Engineering and Design
基金 国家863高技术研究发展计划基金项目(2013AA01A211)
关键词 速度概率 自适应速度值 离散问题 差分进化算法 最优化问题 speed probability adaptive speed value discrete problem differential evolution algorithm optimization problem
  • 相关文献

参考文献13

二级参考文献224

共引文献1038

同被引文献37

  • 1颜学峰,余娟,钱锋.自适应变异差分进化算法估计软测量参数[J].控制理论与应用,2006,23(5):744-748. 被引量:24
  • 2周艳平,顾幸生.差分进化算法研究进展[J].化工自动化及仪表,2007,34(3):1-6. 被引量:72
  • 3Brest J,Boskovic B,Zumer V.An improved self-adaptive differential evolution algorithm in single objective constrained realparameter optimization[C]//IEEE Congress on Evolutionary Computation.Piscataway,NJ:IEEE Press,2010:1-8.
  • 4Das S,Suganthan PN.Differential evolution:A survey of the state-of-the-art[J].IEEE Transactions on Evolutionary Computation,2011,15(1):4-31.
  • 5Basak A,Das S,Tan KC.Multimodal optimization using a biobjective differential evolution algorithm enhanced with mean distance-based selection[J].IEEE Transactions on Evolutionary Computation,2013,17(5):666-685.
  • 6Brest J,Greiner S,Boskovic B,et al.Self-adapting control parameters in differential evolution:A comparative study on numerical benchmark problems[J].IEEE Transactions on Evolutionary Computation,2006,10(6):646-657.
  • 7Qin A,Huang V,Suganthan P.Differential evolution algorithm with strategy adaptation for global numerical optimization[J].IEEE Transactions on Evolutionary Computation,2009,13(2):398-417.
  • 8Tang K,Yao X,Suganthan PN,et al.Benchmark functions for the CEC,2008special session and competition on large scale global optimization[R].Nature Inspired Computation and Applications Laboratory,USTC,China,2007.
  • 9孟红云,张小华,刘三阳.用于约束多目标优化问题的双群体差分进化算法[J].计算机学报,2008,31(2):228-235. 被引量:68
  • 10许小健,黄小平,钱德玲.自适应加速差分进化算法[J].复杂系统与复杂性科学,2008,5(1):87-92. 被引量:24

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部