期刊文献+

高斯混合概率假设密度SLAM算法 被引量:4

Gaussian mixture probability hypothesis density SLAM algorithm
下载PDF
导出
摘要 研究了同步定位与地图创建(SLAM)中的数据关联问题。针对环境特征数未知时,数据关联的误关联率增加,导致SLAM的定位精度偏低的问题,提出了高斯混合概率假设密度SLAM算法。首先采用UFastSLAM解决SLAM中的粒子退化和耗尽问题,其次针对地图特征数未知的情况,将UFastSLAM算法中的数据关联问题转换成有限集统计理论跟踪算法的高斯混合问题,利用高斯混合概率假设密度(Gaussian Mixture Probability Hypothesis Density,GMPHD)算法解决UFastSLAM中数据关联问题。仿真实验结果表明本文提出的GMPHD-UFastSLAM算法在地图特征个数未知的情况下,数据关联准确率和定位精度都得到了提高。 This paper focus on the data association problem in the Simultaneous Localization and Mapping (SLAM).Incorrect rate of data association would be increased under the enviromment with unknown:umber of the features,whereby leading to a decrease in the positioning accuracy of SLAM.To solve this problem,a SLAM algorithm based on Gaussian Mixture Probability Hypothesis Density is proposed.Firstly,UFastSLAM algorithm is used to deal with the problem of the particle degradation and exhaustion.Secondly,for the unknown number of the map features,the data association problem in the UFastSLAM is converted into the gaussian problem of finite set statistics theory tracking algorithm,then GMPHD algorithm is adopted to solve the data association problem in the UFastSLAM algorithm.Simulation results show that the proposed GMPHD-UFastSLAM algorithm can improve the correct rate of data association and position accuracy of the robot under the enviroment with unknown number of the map features.
出处 《西安理工大学学报》 CAS 北大核心 2014年第1期13-21,共9页 Journal of Xi'an University of Technology
基金 国家自然科学基金资助项目(61203345) 陕西省教育厅专项科学研究计划资助项目(2010JK737)
关键词 同步定位与地图创建 数据关联 UFastSLAM算法 高斯概率假设密度 simultaneous localization and mapping data association UFastSALM algorithm Gaussian mixture probability hypothesis density
  • 相关文献

参考文献13

  • 1Dissanayake M G, Newman P,Clark S, to the simultaneous localization and map building (SLAM) problem [J]. IEEE Transaction on Robotics and Automation, 2001,17 (2) : 229- 241.
  • 2Singer R A, See R G. A new filter for optimal tracking in dense multitarget environments[C]///Proceedings of the Ninth Aileron Conference on Circuit and System Theory,1971:201-211.
  • 3Y-Bar-Shalom. Extension of the probabilistic data asso- ciation filter to multitar environment[C]//Proceedings Fifth Symposium on Nonlinear Estimation. 1974:16-21.
  • 4Y-Bar-Shalom, Fortmann T E, Schefie M. Joint proba- bilistic data association for multiple targets in clutter[C] ///Proceedings 1980 Conference Information Sciences and Systems, Princeton University, March 1980.
  • 5Reid D B. An algorithm for tracking multiple targets[J]. IEEE Transaction on Automatic Control, 1979,24 (10) :843-854.
  • 6曾文静,张铁栋,姜大鹏.SLAM数据关联方法的比较分析[J].系统工程与电子技术,2010,32(4):860-864. 被引量:8
  • 7Mullan J, Vo B N, Martin D. Rao-Blackwellised PHD SLAM[C]// Proceedings of the International Confer- ence on Robotics and Automation, Anchorage, Alaska, 2010..5410-5416.
  • 8Arturo G, Oscar R, Monica B,et al. Dealing with data association in visual SLAM[EB/OL]. http: //www. intechopen, corn/books/computer_vision/dealing_with_ data_association_in_visual_slam, [2008-11-1].
  • 9Montemerlo M, Thrun S,Koller D,et al. FastSLAM2. 0: an improved particle filtering algorithm for simulta- neous localization and mapping that provably converges [C] ,//Proceedings of the International Conference on Artificial Intelligence, California, CA, USA, 200a.. 1151-1156.
  • 10Goodman I R, Mahler R P, Nguyen H T. Mathematics of data fusion[M]. Kluwer Academic Publishers, Dor- drecht, 1997.

二级参考文献30

  • 1黄席樾,张著洪,何传江,等.现代智能算法理论及应用[M].北京,科学出版社.2004.
  • 2DORIGOM,STuTZLET.蚁群优化[M].张军,胡晓敏,罗旭耀,等译.北京,清华大学出版社,2006.
  • 3Neira J,Tard'os J D.Data association in stochastic mapping using the joint compatibility test[J].IEEE Trans.on Robotics and Automation,2001,17(6):890-897.
  • 4Thrun S,Liu Y,Koller D,et al.Simultaneous localization and mapping with sparse extended information filters[J].The International Journal of Robotics Research,2004,23(7):693-716.
  • 5Wolf D F,Sukhatme G S.Mobile robot simultaneous localization and mapping in dynamic environments[J].Autonomous Robots,2005,19(1):53-65.
  • 6Montemerlo M,Thrun S.Simultaneous localization and mapping with unknown data association using fast SLAM[C]∥Proc.of IEEE International Conference on Robotics and Automation,Taibei,2003:1985-1991.
  • 7Cooper A J.A comparison of data association techniques for simultaneous localization and mapping[D].Aerospace Engineering and Mechanics,University of Minnesota,2005.
  • 8Montemerlo M,Thrun S,Koller D.Fast SLAM:a factored solution to the simultaneous localization and mapping problem[C]∥Proc.of the AAAI National Conference on Artifcial Intelligence,Edmonton,Canada,2002.
  • 9GOODMAN I R,MAHLER R,NGUYEN H.Mathematics of data fusion[M].Boston:Kluwer Academic Publishing Co.,1997.
  • 10R Mahler.A theoretical foundation for the Stein-Winter probability hypothesis density multi-target tracking approach[C] // Proc.MSS Nat'l Symp.on Sensor and Data Fusion,San Antonio,TX,USA,June 2002.USA:2002.

共引文献12

同被引文献13

引证文献4

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部