期刊文献+

服务产品多营销渠道下顾客渠道选择的量化分析 被引量:2

下载PDF
导出
摘要 在全球服务经济迅速发展的背景下,以数字化为基础、互联网为纽带的新经济革命的到来,为服务产品如酒店客房的销售从传统的单一店面销售模式走向多营销渠道销售模式提供了强有力支持。本文首先对新技术环境下酒店客房销售模式进行了介绍,主要有实体门店销售、实体店官网销售、实体旅行社及在线旅行社四种模式,并针对不同年龄段顾客就这四种销售方式的选择趋势采用多属性决策方法进行了排序,且对排序结果作了解释。酒店在进行客房预订销售时,可以根据历史入住顾客年龄段分布情况,适时合理调整酒店的营销战略。 With the rapid development of the global service economy, the arrival of the new economic revolution with the digitalization as the foundation and the internet as a !ink provides a strong support for the transformation of service products like hotel rooms from traditional single channel to multiple marketing channels. This paper introduces four kinds of sales models such as physical store sales, official website store sales, entity travel agency and online travel agency, applies the multiple - attribute decision making method to sort the choice~ of the sales trends for customers of different ages and makes an explanation of the results. Hotels can adjust the marketing strategies timely and reasonably for room reservations according to the historical age distribution of customers.
作者 周世平
出处 《企业经济》 北大核心 2014年第4期80-83,共4页 Enterprise Economy
基金 教育部人文社会科学研究一般项目"网络环境下服务供应链运作绩效及风险控制研究"(批准号:11YJA630063) 广东省哲学社会科学"十二五"规划2013年度学科共建项目"超售模式下旅游服务供应链竞争与协调研究--以广东省旅游服务业为例"(批准号:GD13XGL44) 广州市哲学社会科学规划青年课题"多营销渠道下旅游服务产品定价决策模型与方法研究"(批准号:13Q26) 广州铁路职业技术学院院级重点培育项目"创新驱动模式下旅游服务供应链竞争决策模型研究"(批准号:GTXYP1305)
关键词 服务产品 多营销渠道 选择 量化分析 service products multiple marketing channels choice quantitative analysis
  • 相关文献

参考文献14

二级参考文献102

  • 1杨智.营销创新:营销研究的新领域[J].工业技术经济,2005,24(4):90-91. 被引量:4
  • 2Kumar N, Benbasat I. The influence of recommendations and consumer reviews on evaluations of websites [ J ]. Information Systems Research, 2006, 17 (4) : 425 - 439.
  • 3Dellarocas C. The digitization of word of mouth : Promise and challenges of online feedback mechanisms [ J ]. Management Science, 2003, 49(10) : 1407 - 1424.
  • 4Park D H, Lee J, Han I. The effect of on-line consumer reviews on consumer purchasing intention : The moderating role of involvement[ J]. International Journal of Electronic Commerce, 2007, 11 (4) : 125 - 148.
  • 5Zhang Z. Weighing stars : Aggregating online product reviews for intelligent e-commerce applications [ J ]. IEEE Intelligent Systems, 2008, 23 (5) - 42 - 49.
  • 6Hu N, Pavlou P A, Zhang J. Can online reviews reveal a product' s true quality? Empirical findings and analytical modeling of online word-of-mouth communication[ C ]/! Proceedings of the 7th ACM Conference on Electronic Commerce, Ann Arbor, Michigan, USA : Association for Computing Machinery, 2006 : 324 - 330.
  • 7Liu Y, Huang X J, An A J, et al. Modeling and predicting the helpfulness of online reviews [ C l// Procedings of the 8th IEEE International Conference on Data Mining, Washington. DC, USA: IEEE Computer Society, 2008:443 -452.
  • 8Ghose A, Ipeiortis P G. Designing novel review ranking systems : Predicting the usefulness and impact of reviews [ C ]/! Pro- ceedings of the 9th ACM Conference on Electronic Commerce, Minneapolis, MN, USA: Association for Computing Machin- ery, 2007:303-310.
  • 9Otterbacher J. "Helpfulness" in online communities: A measure of message quality [ C ]// Proceedings of the 27th Interna-tional Conference on Human Factors in Computing Systems, Boston, MA, USA: Association for Computing Machinery, 2009 : 955 - 964.
  • 10Abbasi A, Chen H C. Cybergate : A design framework and system for text analysis of computer-mediated computation [ J ]. MIS Quarterly, 2008, 32(4) : 811 -837.

共引文献162

同被引文献8

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部