期刊文献+

经TMCP处理的ABS-EQ47海工厚板钢的组织性能 被引量:1

Microstructure and Mechanical Properties of TMCP Processed ABS-EQ47 Plate Steel for Offshore Platform
原文传递
导出
摘要 以工业生产的ABS-EQ47钢为对象,研究了奥氏体连续冷却相变行为,在中试工厂使用热机轧制(thermomechanical control process,TMCP)工艺成功开发出35mm和40mm厚钢板,考察了钢板经单道次模拟焊接热循环后的组织性能。结果表明,所开发钢板的组织为针状铁素体+细粒状贝氏体,屈服强度(Rp0.2)高于500MPa,抗拉强度(Rm)高于630MPa,伸长率(A)大于20%,在-60℃下横向Charpy冲击吸收能量(KV2)大于200J。TMCP型钢板的屈强比低于同成分调质(QT)钢板的屈强比,但其Rm高于QT型钢板。模拟焊接热输入为30kJ/cm时,粗晶区HAZ试样的KV2不低于40J。 Continuous cooling transformation behavior of commercial ABS-EQ47 grade platform plate steel was investigated under various austenitizing scenarios, i. e. , under the non-deformed, deformed, and simulated heat-affected zone (HAZ) conditions. Plates ranged from 35 to 40mm in thickness were rolled from blocks sectioned from the industrially cast EQ47 steel slab during test-scale rolling trials employing thermo-mechanical control processing (TMCP). Single pass welding processes were also simulated on the TMCP treated plates. The microstructures of the plates consist of mainly acicular ferrite (AF) + refined granular bainite (GB). An excellent combination of strength and toughness is achieved showing yield strength (Rp0. 2 ) greater than 500 MPa, tensile strength (Rm) greater than 630 MPa, and Charpy impact toughness (KV2) greater than 200J even at -60 ℃. In comparison with a commercial steel plate with the same composition and, however, treated by conventional quenching and tempering (QT) process, the TMCP plates exhibit better yield ratio and higher tensile strength. The KVz of the simulated coarse-grained HAZ is higher then 40J at -40 ℃ as long as the heat input of the simulated heat input is less than 30kJ/cm.
出处 《钢铁》 CAS CSCD 北大核心 2013年第9期64-70,共7页 Iron and Steel
关键词 TMCP EQ47海洋工钢 组织 力学性能 TMCP EQ47 offshore platform plate steel microstructure mechanical property
  • 相关文献

参考文献17

  • 1Schtitz W,Schr6ter F. Development of Heavy Steel Plate for Mayflower Resolution, Special Purpose Vessel for Erection of Offshore Wind Tower[J]. Mat Sci and Techn, 2005,21: 590.
  • 2Nagai Y,Inoue H, Nakashima T,et al. YSS00 N/mm High Strength Steel for Offshore Structures With Good CTOD Properties at Welded Joints E J ]. Nippon Steel Technical Report, 2004, 90:14.
  • 3Ouchi C. Development of Steel Plates by Intensive Use of TMCP and Direct Quenching Processes[J]. ISIJ lnt, 2001, 41(6) :542.
  • 4Shikanai N,Mitao S,Endo S. Recent Development in Micro-structure Control Technologies Through the Thermo- Mechanical Control Process (TMCP) With JFE Steel's High- Performance Plates[J]. JFE Technical Report, 2008(1): 1.
  • 5Ichimiya K, Sumi H, Hirai T. 460 MPa-Yield-Strength-Class Steel Plate With JFE EWEL Technology for Large-Heat-In- put Welding[J]. JFE Technical Report, 2008(11) : 7.
  • 6Schwinn V, Bauer J, Fltiss P, et al. Recent Developments and Applications of TMCP Steel Plates [J]. Revue de Mtallurgie, 2011,108(5) :283.
  • 7Vervynckt S, Verbeken K, Lopez B, et al. Modern HSLA Steels and Role of Non-Recrystallization Temperature [J]. International Materials Reviews, 2012, 57(4):187.
  • 8Liu D S, Li Q L, Emi T. Microstructure and Mechanical Properties in Hot Rolled Extra-High-Yield-Strength Steel Plates for Offshore Structure and Shipbuilding [J]- Metall Mater Trans A, 2011, 42A:1349.
  • 9Liu D S, Cheng B G, Luo M. F460 Heavy Steel Plates for Offshore Structure and Shipbuilding Produced by Thermome-chanical Control Process [J]. ISI] Int, 2011, 51:603.
  • 10翁宇庆,康永林.中国轧钢近年来的技术进步[J].钢铁,2010,45(9):1-13. 被引量:27

二级参考文献73

  • 1WENG Yu-qing 1,YANG Cai-fu 2,SHANG Cheng-jia 3 (1.The Chinese Society for Metals,Beijing,PR China,2.Centre Iron and Steel Research Institute,Beijing,PR China,3.University of Science and Technology Beijing,Beijing,PR China).The State-of-Art and Development Trends of HSLA Steels in China[J].Journal of Iron and Steel Research(International),2011,18(S1):1-13. 被引量:5
  • 2ZHANG Xiao-gang (Anshan Iron and Steel Group Corporation,Anshan 114001,Liaoning,China).The Development of Advanced HSLA Steel in Angang in Low Carbon Age[J].Journal of Iron and Steel Research(International),2011,18(S1):22-28. 被引量:1
  • 3康永林,傅杰,毛新平.薄板坯连铸连轧钢的组织性能综合控制理论及应用[J].钢铁,2005,40(7):41-45. 被引量:14
  • 4金涛 刘继勋.海洋采油平台钢板开发与研究.钢铁,2002,37:498-498.
  • 5中国机械工业部.GB/T2358-94,金属材料裂纹尖端张开位移试验方法[S].北京:中国标准出版社,1994.
  • 6Datta R, Mukerjee D Jha S. Weldability Characteristics of Shield Metal arc Welded High Strength Quenched and Tempered Plates[J]. Journal of Materials Engineering and Performance,2002,11(1) :5.
  • 7Neves J, Loureiro A. Fracture Toughness of Welds-Effect of Brittle Zones and Strength Mismatch[J]. Journal of Materials Processing Technology, 2004(10) :537.
  • 8小指軍夫.制御庄延·制御冷却-压延による材質製の流れ[M].東京:地人書馆,1997.
  • 9Kamio H,Ueno Y,Tsukada K,et al.钢板在线加速冷却技术的发展[A].钢的加速冷却国际研讨会文集[C].鞍山:鞍钢钢研所,1985.131-135.
  • 10Toshihiko Takeda,Tsutomu Suzuki,Tamotsu Hashimoto.动态加速冷却工艺的开发[A].钢的加速冷却国际研讨会文集[C].鞍山:鞍钢钢研所,1985.86-96.

共引文献128

同被引文献14

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部