期刊文献+

基于多时相多光谱红外图像浅层地下目标探测 被引量:2

Detection of subsurface targets based on multitemporal and multispectral infrared image
下载PDF
导出
摘要 浅层地下目标影响周围区域的热物理特性,引起区域表面温度差异随时间变化的现象,对应在红外图像上则导致灰度值差异随时间变化.针对这一问题,本文研究了包含地下目标的区域温度分布的数学模型,揭示了区域温度变化和地下目标的热物理性质与埋藏状况的关系,进行求解得到区域表面温度分布的预测值.利用实际获取的多时相多光谱红外图像反演区域地表温度分布,利用多光谱图像丰富的光谱信息来反演区域表面的多时相温度分布,和预测值进行比对,使区域表面温度分布的探测值和预测值相一致的待求解参数的估计值即为地下目标的探测结果. Since the existence of buried targets influences the thermal physical properties of the surrounding area, causing the temperature differences over time in the regional surface, which reflected in the infrared image is the gray value changes over time. To solve the problem, we research on the mathematical model of temperature change of the region containing buried targets, and reveal the relationship between the regional temperature changes and thermal physical properties and buried position of the buried targets. We use real multi-temporal and multi-spectral infrared images to get the temperature distribution of the region surface which compared with the solution of the mathematical model. By continuously changing the value of the thermal model parameters, we can get a solution which consistent with the temperature distribution obtained by the real temporal infrared images, and then we complete the detection of subsurface targets
出处 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2014年第3期14-19,共6页 Journal of Harbin Institute of Technology
基金 国家自然科学基金资助项目(60972144)
关键词 温度分布模型 多时相 多光谱 红外探测 浅层地下目标 temperature distribution model multi-temporal multi-spectral infrared detection subsurface targets
  • 相关文献

参考文献10

  • 1CREMER F, NGUYEN T T, YANG L, et al. Stand-offthermal IR minefield survey : system concept andexperimental results [C]//Proceedings of SPIE.Bellingham WA : SPIE, 2005 : 209-220.
  • 2MARTINEZ P L,Van KEMPEN L, SAHLI H, et aLImproved thermal analysis of buried landmines [J].IEEE Transactions on Geoscience and Remote Sensing,2004,42(9) :1965-1975.
  • 3MUSCIO A, CORTICELLI M A. Land mine detection byinfrared thermography: Reduction of size and duration ofthe experiments [J]. IEEE Transactions on Geoscienceand Remote Sensing, 2004, 42(9) : 1955-1964.
  • 4SENDUR I K,BAERTLEIN B A. Numerical simulationof thermal signatures of buried mines over a diumalcycle [C]//Proceedings of SPIE. Bellingham WA:SPIE, 2000:156-167.
  • 5KHANAFER K, VAFAI K,BAERTLEIN B A. Effectsof thin metal outer case and top air gap on thermal IRimages of buried antitank and antipersonnel land mines[J]. IEEE Transactions on Geoscience and RemoteSensing, 2003,41(1):123-135.
  • 6程洁,柳钦火,李小文,肖青,杜永明.土壤中红外发射率提取算法研究[J].红外与毫米波学报,2008,27(1):21-26. 被引量:4
  • 7THANH N T, SAHLI H, HAO D N. Finite-DifferenceMethods and Validity of a Thermal Model for LandmineDetection With Soil Property Estimation [J]. IEEETransactions on Geoscience and Remote Sensing, 2008,45(3) :656-674.
  • 8THANH N T,SAHLI H,HAO D N. InfraredThermography for Buried Landmine Detection : InverseProblem Setting [J] . IEEE Transactions on Geoscienceand Remote Sensing, 2008,46(12) :3987-4004.
  • 9DEANSJ, GERHARD J, CARTER L J. Analysis of athermal imaging method for landmine detection, usinginfrared heating of the sand surface[J]. Infrared Physics& Technology, 2006,48(3) :202-216.
  • 10ZARE A, BOLTON J, GADER P,et al. Vegetationmapping for landmine detection using long-wavehyperspectral imagery [J]. IEEE Transactions onGeoscience and Remote Sensing, 2008,46 ( 1) : 172-178.

二级参考文献11

  • 1祝善友,朱迅,尹球,匡定波.温度与发射率分离模型的改进及其敏感性分析[J].红外与毫米波学报,2006,25(1):71-76. 被引量:4
  • 2官莉,Huan Hgung-Lung.大气红外探测仪的探测器序列定位误差[J].红外与毫米波学报,2007,26(2):153-156. 被引量:3
  • 3John W Salisbury, Dane M D' Aria. Emissivity of terestrial materials in the 3 - 5 μm atmospheric window [ J ]. Remote Sensing of Environment, 1994, 47:345-361.
  • 4Amit Mushkin, Lee K Baliek, Alan R Gillespie. Extending surface temperature and emissivity retrieval to the mid-infrared(3 -5μm) using the Multispectral Thermal Imager ( MTI ) [ J ]. Remote Sensing of Environment, 2005, 98 : 141-151.
  • 5Andrew R Korb, Peter Dybwad, Winthrop Wadsworth, et al. Protable Fourier transform infrared spectroradiometer for field measurements of radiance and emissivity [ J]. Applied Optics, 1996,35( 10 ) : 1679-1692.
  • 6Wan Z, Ng D, Dozier J. Spectral emissivity measurements of land-surface materials and related radiative transfer simulations [J]. Adv. Space Res. ,1994,14(3) :91-94.
  • 7Ken Watson. Spectral ration method for measuring emissivity [ J ]. Remote Sensing of Environment, 1992,42 : 113-116.
  • 8Barducci A, Pippi I. Temperature and emissivity retrieval from remotely sensed images using the "gray body emissivity" method [ J]. IEEE Transactions on Geoscience and Remote Sensing, 1996,3,4( 3 ) :681-695.
  • 9Gillespie AR, Matsunaga T, Rokugawa S, et al. A temperature and emissivity separation algorithm for advanced spacebome thermal emission and reflection radiometer (ASTER) images[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(4) :1113-1126.
  • 10Borel C C. Surface emissivity and temperature retrieval for a hyperspectral sensor [ J ]. Proceedings of the International Geoscience and Remote Sensing Symposium, 1998, 1:546-549.

共引文献3

同被引文献9

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部