期刊文献+

轮式探测车被动自适应性与自由度关系分析

Relationship analysis between passive self-adaptability and degrees of freedom of the wheeled rover's locomotion system
下载PDF
导出
摘要 为设计具有自适应性能的探测车,保证轮式探测车移动机构在行驶过程中车轮与地面接触良好,研究自适应性能与单侧悬架系统及其漫游车整体所需自由度之间的关系.给出自适应性的3种分类方法,分析自适应性能对漫游车的爬坡性能、车体稳定性能及能耗特性的影响;建立具有自适应性能的探测车单轮系统数学模型并得到此系统的自由度;分别建立包含两轮、三轮及k个车轮的自适应悬架系统数学模型,分析并得到上述系统所需的自由度;分别建立在悬架对称布置和四周布置两种情况下的探测车自由度模型,并对一些具有代表性的被动自适应特性探测车自由度进行了统计和分析.研究结果表明:良好的自适应性是实现移动机构综合性能的前提条件,具有自适应性的单侧悬架系统与探测车整体所需自由度分别为1和3.该方法可为探测车悬架及车体系统构型综合时自由度的确定提供指导. To make the designed rover have self-adaptability and better contact with ground, DOFs required for single suspension system and the whole rover are studied. Three classification ways of self-adaptability are given, and the relationship between self-adaptability and climbing performance, stability, energy consumption is analyzed. Mathematic model of single wheel-suspension system is established and such system' s DOF is obtained. Based on aforementioned analysis, mathematic models of double, three and k wheel-suspension system are established respectively with calculated DOFs for these systems. Two DOF models for wheeled rover are given followed by DOF statistics and analysis of some representative self-adaptive rovers. The analysis shows that self-adaptability is the basis for realizing comprehensive performance of the locomotion mechanism. DOFs for single suspension system and rover are 1 and 3, respectively. The conclusion has universalism and can determine required DOFs for structural synthesis of wheeled rover.
出处 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2014年第3期30-36,共7页 Journal of Harbin Institute of Technology
基金 高等学校学科创新引智计划资助项目(B07018) 国家自然科学基金资助项目(51075079)
关键词 探测车 被动自适应 轮式移动机构 自由度 悬架 构型综合 rover passive self-adaptability wheeled locomotion mechanism DOF suspension structural synthesis
  • 相关文献

参考文献15

  • 1GU Kanfeng, WANG Hongguang, ZHAO Mingyang. Theanalyse of the influence of external disturbance on themotion of a six-wheeled lunar rover[C] //Proceedings of2007 IEEE International Conference on Mechatronicsand Automation. Harbin;IEEE, 2007:393-398.
  • 2CHEN Baichao, WANG Rongben, JIA Yang, et al.Design of a high performance suspension for lunar roverbased on evolution [J]. Acta Astronautica,2009, 64(9/10) :925-934.
  • 3SIEGWART R,LAMON P,ESTIER T, et al. Innovativedesign for wheeled locomotion in rough terrain, roboticsand autonomous systems [J]. Robotics and AutonomousSystems, 2002 , 40 ( 2/3) : 151-162.
  • 4ROLLINS E,LUNTZ J, FOESSEL A. Nomad:a demonstrationof the transforming chassis [C]//Proceeding of IEEEInternational Conference on Robotics and Automation.Leuven,Belgium;IEEE, 1998; 611-617.
  • 5LINDEMANN R A, BOCKLER D B, HARRINGTONB D,et al. Mars exploration rover mobility development[J]. Robotics & Automation Magazine,IEEE,2006,13 (2) :19-26.
  • 6KUBOTA T, KURODA Y, KUNII Y, et al. Small,light-weight rover " Micro5 " for lunar exploration [J].Acta Astronautica,2003,52:447-453.
  • 7尚建忠,罗自荣,张新访,范大鹏.基于构型的轮式空间探测机器人创新设计与优化[J].中国机械工程,2007,18(4):414-418. 被引量:5
  • 8罗昌杰,邓宗全,刘荣强,王闯.基于零力矩点理论的腿式着陆器着陆稳定性研究[J].机械工程学报,2010,46(9):38-45. 被引量:17
  • 9MALENKOV M I. Key technologies of the moonexploration-realization and perspectives of creation of highly effectivelocomotion systems for the moon rovers [C]//Proceedings of 8th ILEWG conference on explorationand utilization of the moon. Beijing : IEEE,2006: 23-27.
  • 10SINGH A K,EATHAKOTA V P, KRISHNA K M,et al. Evolution of a four wheeled active suspension roverwith minimal actuation for rough terrain mobility [C] //Proceedings of the 2009 IEEE International Conferenceon Robotics and Biomimetics. Guilin : IEEE,2009 : 794-796.

二级参考文献23

  • 1尚建忠,罗自荣,张新访.两种轮式月球车悬架方案及其虚拟样机仿真[J].中国机械工程,2006,17(1):49-52. 被引量:19
  • 2刘志全,黄传平.月球探测器软着陆机构发展综述[J].中国空间科学技术,2006,26(1):33-39. 被引量:36
  • 3Taylor Inc. Investigation of the application of airbag to provide soft landing[C]// AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar, May 21-24,2001, Boston. New Jersey: AIAA, 2001: 2 001-2 045.
  • 4SPERLING F B. The surveyor shock absorber[R]. Washington: Jet Propulsion Laboratory, 1968.
  • 5MILTON B. Surveyor lander mission capability[R]. Washington: NASA, 1964.
  • 6MCGEBEE J R, STUBBS M. Experimental validation of a landing-dynamics computer program for legged spacecraft landers[R]. Washington: NASA, 1973.
  • 7WALTON W C, DURLING B J. A procedure for computing the motion of a lunar-landing vehicle during the landing impact[R]. Washington: NASA, 1967.
  • 8GEORGE A, JRAND D, HAROLD H. A mathematical procedure for predicting the touchdown dynamics of a soft-landing vehicle[R]. Washington. NASA, 1971.
  • 9IRWIN D C. Landing dynamics study for lunar landing research vehicle[R]. Washington: NASA, 1965.
  • 10HAROLD D S. Apollo experience report guidance and control system: Lunar module stabilization and control system[R]. Washington: NASA, 1975.

共引文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部