期刊文献+

不同护卫舰船型飞行甲板气流场特征研究 被引量:7

Research on the airwake characteristics of flight deck for different frigate ship models
下载PDF
导出
摘要 为了研究舰船气流场特征,对简化船型SFS1和SFS2以及实体护卫舰船型进行数值模拟,与风洞实验数据对比验证,分析了飞行甲板周围气流场特征.通过对SFS1船型的计算,得到了舰船中心表面压力系数的分布,发现涡在机库顶端分离、脱落并且再附着于飞行甲板,验证了飞行甲板表面马蹄涡的存在.算例结果表明护卫舰船体结构对空气的阻滞作用是涡分离和脱落的重要驱动力.对于实体护卫舰船型分别计算了0°和右舷30°风向角时的气流场工况,分析发现机库结构的形状和尺寸会影响飞行甲板周围涡旋的强度和位置.在0°风向角时,机库门敞开有助于改善飞行甲板的气流场状况. To study the characteristics of ship airwake, the simplified frigate ship, SFS1 and SFS2, and actual frigate ship were simulated, and the results were used to analyze the characteristics of flow field around the flight deck by comparing with the experimental data in wind tunnel. The centerline surface pressure coefficient and vortex separation off the top of hangar shed and reattached on the flight deck were found by the simulation of SFS1, and the existence of horseshoe vortex on the surface of the flight deck was verified. An example indicates that the blocking of the ship geometry is an important driving force for the vortex separation and shedding. The actual frigate ship with 0° and 30° starboard winds was simulated, and the results showed that the shape and size of the hangar affected the intensity and location of the vortices around the flight deck. In the 0° wind direction, to open the hangar door could improve the flow field status of the flight deck.
作者 刘长猛 郜冶
出处 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2014年第3期80-85,共6页 Journal of Harbin Institute of Technology
基金 国家自然科学基金资助项目(10972063)
关键词 护卫舰 气流场 飞行甲板 数值计算 涡旋 frigate airwake flight deck numerical computation vortex
  • 相关文献

参考文献13

  • 1BOGSTAD M C,HABASHI W G, AKEL I,et al.Computational-fluid-dynamics based advanced shipairwake database for helicopter flight simulators [J].Aircraft, 2002, 39(5): 830-834.
  • 2ROPER D M, OWEN I,PADFIELD G D,et al.Integrating CFD and piloted simulation to quantify ship-helicopter operating limits [J]. Aeronaut, 2006, 110(1109) : 419-428.
  • 3ZAN S. Technical comment on computational fluiddynamics based advanced ship-airwake database forhelicopter flight simulation [J]. Journal of Aircraft,2003, 40(5): 1007.
  • 4ROPER D M,OWEN I,PADFIELD G D. CFDinvestigation of the helicopter-ship dynamic interface[C]//In: 61st AHS annual forum proceedings.Grapevine, TX: AHS, 2005: 1985.
  • 5POLSKY S A, BRUNER C W S. Time-accuratecomputational simulations of an LHA ship airwake[C]//18th AIAA Applied Aerodynamics Conference.Reston, VA: AIAA, 2000 : 288-297.
  • 6POLSKY S A. A computational study of unsteady shipairwake[C]//40th AIAA Aerospace Sciences Meeting& Exhibit. Reston, VA: AIAA, 2002: (SYA)25-1-(SYA)25-11.
  • 7CZERWIEC R M, POLSKY S A. LHA airwake windtunnel and CFD comparison with and without bow flap[C] //22nd Applied Aerodynamics Conference.Reston, VA: AIAA, 2004: AIAA 2004-4832.
  • 8POLSKY S A, NAYLOR S. CVN airwake modeling andintegration : initial steps in the creation andimplementation of a virtual burble for F-18 carrierlanding simulations [C]//AIAA Modeling andSimulation Technologies Conference and Exhibit.Reston, VA: AIAA, 2005; AIAA 2005-6298.
  • 9REDDY K,TOFFOLETTO R, JONES K. Numericalsimulation of ship airwake [J] . Comput. Fluids, 1999,29(4): 451-465.
  • 10YESILEL H,EDIS F O, Ship airwake analysis by CFDmethods [J] _ Am Inst Phys Conf Proc,2007 ; 936 :674-677.

同被引文献61

引证文献7

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部