期刊文献+

基于数据驱动的SAR溢油图像分割算法对比研究

下载PDF
导出
摘要 本文针对SAR图像中溢油区域的散射特点,首次将二维最大类间方差阈值分割算法应用于SAR溢油分割,并提出了一种基于改进二维最大类间方差的SAR溢油图像分割算法。基于ENVISAT ASAR溢油图像的实验结果表明,和经典最大熵以及原始二维最大类间方差分割算法相比,本文算法是一种抗噪性能好,分割精度高,运算速度快的SAR溢油图像阈值分割算法。 On consideration of the scattering characters of the oil spil area in SAR image, this paper firstly applies the 2D-otsu threshold algorithm into the SAR image oil spil detection, and proposes an improved SAR image oil segmentation algorithm based on 2D-otsu. The comparisons results derived based on maximum entropy, 2D-Otsu and the proposed algorithm indicate that the improved one is a satisfied oil threshold segmentation method with better anti-noise performance, high segmentation accuracy and fast calculation speed.
出处 《数字技术与应用》 2014年第2期116-118,共3页 Digital Technology & Application
关键词 图像分割 阈值分割 溢油检测 2D-Otsu image segmentation threshold segmentation spil oil detection two-dimensional Otsu
  • 相关文献

参考文献1

二级参考文献15

  • 1OSHER S, SETHIAN J A. Fronts propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations[J]. Journal of Computa- tional Physics, 1988, 79: 12-49.
  • 2MAHSHID F, ZHONG X, EAM K T. A novel approach for curve evolution in segmentation of medical image[J]. Compterized Medical Imaging and Graphics, 2010, 34(5): 354-361.
  • 3LI W, CHUMMING L, QUAN S S, et al. Active contour driven by local and global intensity fitting energy with application to brain MR image segmentation[J]. Comput Med Imaging Graph, 2009, 33(7): 520-531.
  • 4LI C, XU C, GUI C, et al. Level set evolution without re-initialization: a new variational formulation[C]. San Diego, Proceeding of the IEEE Conference on Computer Vision and Pattern Recognition, 2005, 430-436.
  • 5BEZDEK J C, EHRLICH R, FULL W. FCM: The fuzzy c-means clustering algorithm[J]. Computers & Geos- ciences, 1984, 10(2-3): 191-203.
  • 6KEH S C, HONG L T, SHARON C, et al. Fuzzy c-means clustering with spatial information for image segmenta- tion[J]. Computerized Medical Imaging and Graphics, 2006, 30(1): 9-15.
  • 7RAY N, ACTON S T. Image segmentation by curve evolution with clustering[C]. Pacific Grove: Conference Record of the Thirty-Fourth Asilomar Conference on Signals, Systems and Computers, 2000, 1: 495-498.
  • 8LIB N, CHUI C K, CHANG S. Integrating spatial fuzzy clustering with level set methods for automated medical image segmentation[J]. Computers in Biology and Medicine, 2011, 41(1): 1-10.
  • 9KRINIDIS S, CHATZIS V. Fuzzy energy-based active contours[J]. IEEE Transactions on Image Processing, 2009, 18(12): 2747-2755.
  • 10CHAN T F and VESE L A. Active contours without edges[J]. IEEE Transactions on Image Processing, 2001, 10(2): 266-277.

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部