期刊文献+

一种基于圆形分布的支撑向量机核选择方法

A Kernel Selection Approach of Support Vector Machine Based on Characteristics of Circle Distribution
下载PDF
导出
摘要 针对目前支撑向量机核函数的选择没有统一规则的现状,提出了一种结合数据分布特征进行支撑向量机核选择的方法。首先,采用多维尺度分析方法对高维数据集合理降维,提出判断数据集是否呈圆形分布的算法,在得到数据集分布特征的基础上进行核选择,达到结合数据分布特征合理选择支撑向量机核函数的目的。实验结果表明:呈圆形分布的数据集采用极坐标核进行分类,识别率达到100%,训练时间短,优于采用神经网络、决策树、高斯核及多项式核的分类效果。该方法提高了支撑向量机的泛化能力。 The kernel selection has no unified rules for support vector machine( SVM). Based on the characteristics of dataset distribution,a new way to select the kernel function was presented. First dimension reduction of the high dimensional dataset was processed with MDS method. Then an algorithm was put forward to judge whether dataset is circle distribution or not. On the basis of determining circle distribution,how to select the kernel function was discussed to achieve the purpose of selecting SVM kernel function with data distribution characteristics. The experimental results illustrate that the classification recognition rate of circle datasets reaches 100% with polar kernel and the training time is the shortest. The classification effect is better than that of using neural network,decision tree,gaussian kernel SVM and polynomial kernel SVM. The method can improve the generalization ability of SVM.
作者 郭金玲
出处 《河南科技大学学报(自然科学版)》 CAS 北大核心 2014年第3期55-57,63,共4页 Journal of Henan University of Science And Technology:Natural Science
基金 国家自然科学基金项目(61273291) 山西省高等学校科技研究开发项目(20121131) 山西大学商务学院基金项目(2012014)
关键词 支撑向量机 核选择 圆形分布 极坐标 support vector machine kernel selection circle distribution polar kernel
  • 相关文献

参考文献4

二级参考文献19

  • 1C Cortes, V N Vapnik. Support vector networks. Machine Learning, 1995, 20(3): 273-297
  • 2C Burges. A tutorial on support vector machines for pattern recongnition. Data Mining and Knowledge Discovery, 1998, 2(2): 1~43
  • 3T Joachims. Text categorization with support vector machines:Learning with many relevant features. In: C Nedellec ed. Proc of ECML-98. Heidelberg: Springer-Verlag, 1998. 137~142
  • 4E Leopold, J Kindermann. Text categorization with support vector machines, How to represent texts in input space? Machine Learning, 2002,46(1-3): 423~444
  • 5N Cristianini, J S Taylor. An Introduction to Support Vector Machines and Other Kernel-based Learning Methods. New York:Cambridge University Press, 2000
  • 6Y Yang, S Slattery, R Ghani. A study of approaches to hypertext categorization. Journal of Intelligent Information Systems, 2002,18(2/3): 219~241
  • 7V N Vapnik. Statistical Learning Theory. New York:John Wiley & Sons, 1998
  • 8V N Vapnik. The Nature of Statistical Learning Theory, 2nd edition. New York: Springer-Verlag, 2000
  • 9陈斌,冯爱民,陈松灿,李斌.基于单簇聚类的数据描述[J].计算机学报,2007,30(8):1325-1332. 被引量:18
  • 10吴佑寿,赵明生,丁晓青.一种激励函数可调的新人工神经网络及应用[J].中国科学(E辑),1997,27(1):55-60. 被引量:26

共引文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部