期刊文献+

采用人工鱼群的改进广义Hough变换目标定位

Improved generalized Hough transform using artificial fish swarm algorithm in target location
原文传递
导出
摘要 目的传统广义Hough变换可以在平移、旋转、缩放、局部遮挡等情况下,对任意目标进行定位,但是存在定位速度较慢、存储空间较大、累加器空间离散化等缺点。因此提出了基于全局自适应人工鱼群的广义Hough变换算法,对目标进行更快地定位。方法根据目标形状的极坐标信息建立精简R表,去除梯度信息,降低计算复杂度,同时提高目标模型的鲁棒性;然后,根据精简R表计算待测目标模型函数值,作为人工鱼的适应度值,人工鱼群采用自适应的感知范围和步长,通过不断交互并协调行为,在连续的多维累加器空间中启发式地搜索最优目标模型参数,从而标定出目标的准确位置。结果实验结果表明,该算法只需要常量级的存储空间开销,并且与广义Hough变换算法相比速度提高了90%以上,较大地减少了空间和时间开销,也提高了目标的定位精度。结论新的累加器空间搜索策略,能够更快速准确地定位目标,特别是在复杂背景下对复杂目标定位更为明显。 Objective Traditional generalized Hough Transform in translation, rotation, scaling, partial occlusion and oth- er circumstances, can locate any target, However, the slow positioning speed, the large storage space, the discrete accu- mulator space, and other problems hinder the usability of this method. Method Therefore, an improved generalized Hough transform based on a global adaptive artificial fish swarm algorithm is proposed to locate targets more quickly. According to the polar coordinates of the target shape information a reduced R-Table is established, which removes the gradient informa- tion to reduce the computational complexity and improve the robustness of the target model. Then we use a reduced R-table to calculate the value of the candidate target model as an artificial fish fitness value. And the artificial fish uses adaptive vi- sion and step as well as constantly interaction and coordinate behavior to search the optimal target model parameters in the continuous multi-dimensional accumulator space heuristically which demarcates the exact location of the target. Result Ex- perimental results show that, the algorithm requires only a constant level of storage space cost. The speed is improved more than 90% compared with the generalized Hough Transform algorithm. The algorithm not only greatly reduces the cost of space and time, but also improves the positioning accuracy of the target. Conclusion We propose a new search strategy in the accumulator space, which can be more quickly and accurately to locate the target, especially the complex target in complicated backgrounds.
作者 李志 谢强
出处 《中国图象图形学报》 CSCD 北大核心 2014年第4期549-555,共7页 Journal of Image and Graphics
关键词 广义HOUGH变换 精简R表 全局自适应人工鱼群 目标定位 generalized Hough transform reduced R-Table global adaptive artificial fish swarm algorithm target location
  • 相关文献

参考文献12

  • 1Ferdinamt H, Heike R, Gordon B, et al. Model interpolation for eye localization using the discriminative generalized hough trans- form [ C ]//Proceeding of International Conference of the Biomet- rics Special Interest Group. Darmstadt,Germany: IEEE Comput- er Society ,2012 : 1-12.
  • 2陈军,徐友春,赵明,彭永胜.基于随机Hough变换的道路边界识别算法研究[J].中国图象图形学报,2009,14(5):905-911. 被引量:15
  • 3Partha P R, Souvik B, Umapada P, et al. Signature based docu- ment retrieval using GHT of background information [ C]//Pro- ceeding of International Conference on Frontiers in Handwriting Recognition. Bari, Italy: IEEE Computer Society, 2012: 225- 230.
  • 4Cha J,Corer R H,Kozaitis S P. Extended Hough transform for lin- ear feature detection [ J ]. Pattern Recognition, 2006,39 ( 6 ) : 1034-1043.
  • 5袁卫鹏,施鹏飞.模糊随机Hough变换算法[J].上海交通大学学报,2002,36(12):1825-1828. 被引量:10
  • 6Hamid I, Fereshteh S, Mohammad M E. Fuzzy generalized Hough transform invariant to rotation and scale in noisy environment [ C ]//Proceeding of IEEE International Cont~erence on Fuzzy System. Jeju Island, South Korea: IEEE Computer Soeiety, 2009 : 153-158.
  • 7张英涛,黄剑华,唐降龙,刘家锋.一种基于精简粒子群优化的霍夫变换算法[J].天津大学学报,2011,44(2):162-167. 被引量:9
  • 8Galambos C, Kittler J, M atas J. Using gradient information to en- hance the progressive probabilistic Hough transform [ C ~//Pro- ceedings of the International Conference on Pattern Recogni- tion. Barcelona, Spain : IEEE Computer Society ,2000 : 560-563.
  • 9李智磊,翟宏琛,王明伟.一种可识别破碎图形的特殊广义Hough变换方法[J].物理学报,2007,56(6):3234-3239. 被引量:15
  • 10Fernandes E M G P, Martins T F M C, Roeha A M A C. Fish swarm intelligent algorithm for bound constrained global optimiza- tion [ C ]//Proceeding of the International Conference on Compu- tational and Mathematical Methods in Science and Engineering. Gijon,Spain: University of Minho Institutional Repository,2009 : 1-3.

二级参考文献38

  • 1徐友春,王荣本,李克强,赵玉凡.一种基于直线模型的道路识别算法研究[J].中国图象图形学报(A辑),2004,9(7):858-864. 被引量:42
  • 2申金媛,李现国,常胜江,张延炘.相位特征在三维物体识别中的应用[J].物理学报,2005,54(11):5157-5163. 被引量:8
  • 3Sakurai Kazuyuki, Kyo Sholin. A Lane Recognition Method Based on White Line Detection and Road Area Detection [ A ] . In: Proceedings of IEEE International Conference on Intelligent Vehicle [C], Stuttgart, Germany, 1998: 58-61.
  • 4Xu L, Oja E. Randomized Hough Transform (RHT): Basic Mechanism, Algorithms, and Computational Complexities [ J ]. CVGIP : Image Understanding, 1993,57 (2) : 131 - 154.
  • 5Aggarwal N ,Karl W C. Line detection in images through regularized Hough transform[J]. IEEE Transactions on Image Processing,2006,15 (3) :582-591.
  • 6Cha J,Cofer R H,Kozaitis S P. Extended Hough trans- form for linear feature detection [J;. Pattern Recognition, 2006,39 (6) : 1034-1043.
  • 7Xu L. A unified perspective and new results on RHT computing, mixture based learning, and multi-learner bas- ed problem solving [J]. Pattern Recognition,2007,40 (8) :2129-2153.
  • 8Galambos C,Kittler J,Matas J. Using gradient informa- tion to enhance the progressive probabilistic Hough trans- form [C]// Proceedings of the International Conference on Pattern Recognition. Barcelona, Spain,2000: 560-563.
  • 9Hahn K,Jung S ,Han Y,et al. A new algorithm for ellipse detection by curve segments [JJ. Pattern Recognition Let- ter,2008,29(13) :1836-1841.
  • 10Bonci A,Leo T,Longhi S. A bayesian approach to the Hough transform for line detection[J]. IEEE Transac- tions on Systems, Man, and Cybernetics, 2005,35 (6) : 945-955.

共引文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部