期刊文献+

L_1优化在网格去噪中的应用 被引量:1

The application of L_1-optimization in mesh denoising
原文传递
导出
摘要 目的网格去噪是计算机图形学中的经典问题,而如何在去除噪声的同时保持网格的特征结构是这一研究方向所面临的最大挑战。方法提出一种具有稀疏性的全局网格去噪方法,该方法源于信号处理理论中稀疏表示的基本思想,通过优化全局能量函数来去除网格模型的噪声,同时能够保持网格模型的特征结构。该方法共分为两个步骤,第1步为网格面法向量的滤波,首先建立全局优化模型,对噪声网格的面法向量进行滤波优化,其中引入l_1范数来保证解的稀疏性,使得优化后新的面法向量能够保持网格的特征结构;第2步为网格曲面的重建,根据第1步得到的新的面法向量,按照面法向量的定义,建立最小二乘意义下的网格顶点的重建模型,求解得到新的网格曲面。结果由于该模型是全局方法,避免了现有滤波方法可能出现的不收敛等问题,能够取得比较满意的去噪效果。结论大量实验结果表明,本文方法在去除噪声的同时,能较好地保持网格的特征结构,尤其对于CAD模型有很好的实验效果。 Objective Mesh denoising is a typical problem in computer graphics. The key challenge we face in this field is to denoise the mesh and maintain the structure of the mesh at the same time. And it is becoming the hottest topic in this ar- ea. Method We propose a global mesh denoising method using l,-sparsity. This method is motivated by the fundamental theory of sparse representation in the field of signal processing. The global optimization of an energy function is used to re- move noises from the mesh while the features are preserved. There are two steps in our method. The first step is the filtering of the face normals. We formulate a global optimization model to optimize the face normals of the noised mesh. Then we use the/l-norm to ensure the sparsity of the solution, which preserves the structures of mesh features. The second step is the reconstruction of the denoised mesh. Given the new filtered face normals, we create a vertex reconstruction model under the least-square sense according to the definition of the face normal. The denoised mesh is updated by the solution of the recon-struction model. Result Furthermore, our model solves the denoising problem globally, which avoids problems of existing methods, such as the convergence problem. Conclusion A large number of experiments demonstrate that our method is able to remove noises, at the same time, preserving the features of the mesh, especially for the CAD models.
出处 《中国图象图形学报》 CSCD 北大核心 2014年第4期637-644,共8页 Journal of Image and Graphics
基金 国家自然科学基金项目(61300083 61363048 61262050 61173102 61173103) 国家自然科学基金-广东联合基金项目(U0935004) 重大计划项目培育项目(91230103 61363048 61262050) 国家科技重大专项(2013ZX04005021) 中央高校基本科研业务费(DUT13RC206 DUT13JS04)
关键词 计算机图形学 网格去噪 全局滤波 l1稀疏性 computer graphics mesh denoising global filtering l1 -sparsity
  • 相关文献

参考文献20

  • 1Taubin G. A signal processing apprnach to fair surface design[ C]//Proeeedings of tile 22nd annual t'onlk~renee on (]omputer graphit:s and inlerat'live levhniques. New York, USA: A(]M Press, 1995:351-358. [I)01:10.1145/218380. 2184731.
  • 2l)esbnm M, Meyer M, St'hriider P. el al. Implicit fairing of Jr-regular meshes using diffusion and curvature flow[ C]//Procee- ings of the 26th International Conference on Computer Graphics and Interactive Techniques. New York, USA : ACM Press, 1999:317-324. [ DOI: 10.1145/311535.311576 ].
  • 3Guskov I, Sweldens W, Sch~der P. Multiresolution signal pro- cessing for meshes [ C ]//Proceedings of the 26th International Conference on Computer Graphics and Interactive Techniques. New York, USA : ACM Press, 1999:325-334. [DOI : 10.1145/ 311535. 311577].
  • 4Perona P, Malik J. Scale-space and edge detection using aniso- tropic diffusion[ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12 (7) :629-639. [DOI : 10.1109/ 34. 56205 ].
  • 5Black M, Sapiro G, Marimont D, et al. Robust anisotropic diffu- sion [ J ]. IEEE Transactions on Image Processing, 1998, 7 (3) : 421-432. [ DO/: 10.1109/83. 661192 ].
  • 6Tomasi C, Manduchi R. Bilateral filtering for gray and color ima- ges [ C ]//Proceedings of the 6th International Conference on Computer Vision. Washington DC, USA: IEEE Computer Socie- ty, 1998:839-846. [DOI: 10.1109/ICCV. 1998.7108151.
  • 7Donoho D L, Elad M, Temlyakov V N. Stable recovery of sparse overcomplete representations in the presence of noise [ J ]. IEEE Transactions on Information Theory, 2006, 52( 1 ) :6-18. [DOI: 10.1109/TIT. 2005. 860430].
  • 8Candes E J, Romberg J, Tan T. Robust uncertainty principle: exact signal reconstruction from highly incomplete frequency in- formation [ J 1. IEEE Transactions on Information Theory, 2006, 52 ( 2 ) :489-509. [ DOI : 10.1109/TIT. 2005. 862083 ].
  • 9Avron H, Shaft A, Greif C, et al. 11-sparse reconstruction of sharp point set surfaces [ J]. ACM Transactions on Graphics, 2010,29(5 ) : 1-12. [DOI: 10.1145/1857907. 1857911 ].
  • 10王伟明,刘秀平,杨周旺,刘利刚.网格曲面特征的稀疏性优化检测算法[J].计算机辅助设计与图形学学报,2013,25(8):1128-1136. 被引量:4

二级参考文献30

  • 1Fan H Q,Yu Y Z,Peng Q S.Robust feature-preservingmesh denoising based on consistent subneighborhoods [J].IEEE Transactions on Visualization and Computer Graphics,2010,16(2):312-324.
  • 2Bian Z,Tong R F.Feature-preserving mesh denoising baseon vertices classification [J].Computer Aided GeometricDesign,2011,28(1):50-64.
  • 3Shimizu T,Date H,Kanai S,et al.A new bilateral meshsmoothing method by recognizing features [C] //Proceedingsof the 9th International Conference on CAD/CG.LosAlamitos:IEEE Computer Society Press,2005 :281-286.
  • 4Kim S K,Kim S J,Kim C H.Extraction of ridges-valleys forfeature-preserving simplification of polygonal models [M] //Lecture Notes in Computer Science.Heidelberg:Springer,2006,3992:279-286.
  • 5Stylianou G,Farin G.Crest lines for surface segmentationand flattening [J].IEEE Transactions on Visualization andComputer Graphics,2004,10(5):536-544.
  • 6Li Z,Meek D S,Walton D J.Polynomial blending in a meshhole-filling application [J].Computer-Aided Design,2010,42(4):340-349.
  • 7Weber C,Hahmann S,Hagen H.Sharp feature detection inpoint clouds [C] //Proceedings of Shape ModelingInternational Conference.Washington D C:IEEE ComputerSociety Press,2010 :175-186.
  • 8Benko P,Varady T.Segmentation methods for smooth pointregions of conventional engineering objects [J].Computer-Aided Design,2004,36(6):511-523.
  • 9Baker T J.Identification and preservation of surface features[C] //Proceedings of the 13th International MeshingRoundtable.Williamsburg:Sandia National Laboratories,2004:299-310.
  • 10Vieira M,Shimada K.Surface mesh segmentation andsmooth surface extraction through region growing [J].Computer Aided Geometric Design,2005,22(8):771-792.

共引文献3

同被引文献1

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部