期刊文献+

NSGA-Ⅱ面向多目标测试数据模型的生成

Generation of NSGA-Ⅱ for Multi-objective Test Data Model
下载PDF
导出
摘要 测试数据的自动化生成的实现是软件测试自动化的重要研究项目。当前很多研究人员使用多种方法实现测试数据的自动生成,但生成的测试数据一般仅实现最大覆盖率的测试标准。在测试数据生成问题上,希望生成的测试数据能够达到最大的覆盖率,同时也希望生成的测试数据集越小越好,可以降低执行时间,同时提高执行效率。文中从覆盖标准和内存消耗两个方面对测试数据进行评估,采用多目标优化算法NSGA-Ⅱ,实现同时满足最大分支覆盖率和最大内存分配的测试数据的自动生成。实验表明,NSGA-Ⅱ算法生成的测试数据比其他多目标优化算法能更好地满足两个目标。 The realization of the test data automatic generation is an important research project of software test. At present many research- ers use a variety of methods to realize the automatic generation of test data, but the generated test data are generally only to achieve maxi- mum coverage rate. In test data generation, hope that generated test data can achieve maximum coverage rate and generated test data set is as small as possible, therefore reducing the execution time and improving the execution efficiency. To evaluate testing data from two as- pects of coverage standard and memory consumption, adopt multi-objective optimization algorithm, NSGA- 11, to achieve automatic gen- eration of test data which satisfies the biggest branch coverage rate and the maximum memory allocation at the same time. The experimen- tal results show that the NSGA- II to generate test data is better to meet the two goals than the other multi-objective optimization algo- rithms.
出处 《计算机技术与发展》 2014年第4期21-24,28,共5页 Computer Technology and Development
基金 教育部博士点基金项目(200800580004) 天津市自然科学基金资助项目(043600711)
关键词 NSGA-Ⅱ算法 多目标测试数据 覆盖率 内存分配 NSGA-II multi-objective test data coverage rate memory allocation
  • 相关文献

参考文献11

  • 1Harman M,Mansonri S A,Zhang Y. Search based software en- gineering : A comprehensive analysis and review of tends tech- niques and applications[ R]. London:King's College London, 2009.
  • 2Alba E, Chicano F. Software project management with GAs [ J ]. Information science,2007,177 ( 11 ) :2380-2401.
  • 3Bowman M, Briand J C, Labiche Y. Multi-objective genetic al- gorithm to support class responsibility assignment [ C ]//Proc of IEEE international conference on software maintenance. [ s. 1. ] :[s. n. ] ,2007:124-133.
  • 4Zhang Y,Harman M, Mansouri S A. The multi-objective next re/ease problem[ C ]//Proc of Conference on zenetic and evo-lutionary computation. [ s. 1. ] : [ s. n. ] ,2007 : 1129-1137.
  • 5Cao Y, Hu C,Li L. Search-based multi-paths test data gen- eration for structure-oriented testing [ C ]//Proc of ACM/SI- GEVO summit on genetic and evolutionary computation. [ s. l. ]:[s. n. ] ,2009:25-32.
  • 6Zhang Y, Gong D W. Evolutionary generation of test dala for multiple paths coverage with faults detection [ C ]//Proc of IEEE fifth international conference. [ s. 1.]:[ s. n. ] ,2010: 406-410.
  • 7Ghiduk A S, Harrold M J, Girgis M R. Using genetic algo- rithms to aid test-data generation for data- flow coverage [ C ]//Proc of 14th Asia-Pacific software engineering con- ference ( APSEC). [ s. 1. ] : [ s. n. ] ,2007:41-48.
  • 8White L J, Cohen E I. A domain strategy for computer pro- gram testing [ J ]. IEEE transactions on software engineering, 1980,6(3) :247-257.
  • 9Korel B. Dynamic method of software test data generation [ J ]. Journal of software testing, verification and reliability, 1992,2(4) :203-213.
  • 10Deb K, Goyal M. A combined genetic adaptive search (Ge- neAS) for engineering design [ J ]. Computer science and in- formatics, 1996,26(4 ) :30-45.

二级参考文献15

  • 1Coello Coello CA,Van Veldhuizen DA,Lamont GB.Evolutionary Algorithms for Solving Multi-Objective Problems.Kluwer Acedemic/Plenum Publishers,2002.
  • 2Coello Coello CA,Lamont GB.Applications of Multi-Objective Evolutionary Algorithms.Singapore:World Scientific,2004.
  • 3Corne DW,Jerram NR,Knowles JD,Oates MJ.PESA-Ⅱ:Region-Based selection in evolutionary multiobjective optimization.In:Proc.of the Genetic and Evolutionary Computation Conf.(GECCO 2001).Morgan Kaufmann Publishers,2001.283-290.
  • 4Knowles JD,Corne DW.Approximating the nondominated front using the Pareto archived evolution strategy evolutionary computation.Evolutionary Computation,2000.149-172.
  • 5Aguirre AH,Rionda SB,Coello Coello CA,Lizáraga GL,Montes EM.Handling constraints using multiobjective optimization concepts.Int'l Journal for Numerical Methods in Engineering,2004,59(15):1989-2017.
  • 6Fonseca CM,Fleming PJ.An overview of evolutionary algorithms in multi-objective optimization.Evolutionary Computation,1995,3(1):1-16.
  • 7Horn J,Nafpliotis N,Goldberg DE.A niched Pareto genetic algorithm for multiobjective optimization.In:Proc.of the 1st IEEE Conf.on Evolutionary Computation.Piscataway:IEEE Service Center,1994.82-87.
  • 8Zitzler E,Thiele L.Multiobjective evolutionary algorithms:A comparative case study and the strength pareto approach.IEEE Trans.on Evolutionary Computation,1999,3(4):257-271.
  • 9Zitzler E,Laumanns M,Thiele L.SPEA2:Improving the strength pareto evolutionary algorithm for multiobjective optimization.In:Giannakoglou K,et al.,eds.Proc.of the EUROGEN 2001-Evolutionary Methods for Design,Optimisation and Control with Applications to Industrial Problems.2001.95-100.
  • 10Deb K,Pratap A,Agrawal S,Meyrivan T.A fast and elitist multi-objective genetic algorithm:NSGA-Ⅱ.IEEE Trans.on Evolutionary Computation,2002,6(2):182-197.

共引文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部