期刊文献+

人工蜂群算法加速收敛技术研究 被引量:3

Research on Accelerating Convergence Technique of Artificial Bee Colony Algorithm
下载PDF
导出
摘要 为提高蜂群算法的收敛速度及精度,提高其工程应用价值,探索了蜂群算法的加速收敛技术。通过分析自然界真实蜜蜂群间的信息共享模式,发现标准蜂群算法在适应度信息共享的处理上存在不足,导致该算法存在易陷入局部最优及收敛速度慢的缺点。文中在标准算法的基础上,修改了适应度共享机制,使得一定邻域内的多个采蜜蜂的搜索信息均可被观察蜂共享,在观察蜂的搜索中引入欧式距离以确定有效邻域,选择邻域内的最优解用以生成新蜜源。通过测试发现改进后的算法收敛速度明显提高,提高幅度高达50%。 Bee colony accelerating convergence technique is studied in order to improve the convergence speed and accuracy, and engi- neering application value of the artificial bee colony algorithm. It is discovered that imperfection is existed in standard ABC algorithm when coping with the share of the information which is assembled by employed bees. This flaw leads to the deterioration of the algorithm. In this paper,the share strategy is modified with the aim to make use of the data collected by multiple employed bees which are in certain neighborhood. Euclidean distance is introduced to identify the valid neighborhood, and the best solution in the region is selected to pro- duce new nectar. Numerical experiment indicates that the convergence speed of the modified algorithm is improved,about 50% better than the original one.
作者 杨小东 刘波
出处 《计算机技术与发展》 2014年第4期25-28,共4页 Computer Technology and Development
基金 国家自然科学基金资助项目(51236006)
关键词 人工蜂群算法 搜索策略 欧式距离 全局收敛 artificial bee colony algorithm search strategy Euclidean distance global convergence
  • 相关文献

参考文献16

  • 1Karaboga D. An idea based on honeybee swarm for nu- merical optimization [ R ]. Turkey: Erciyes University, 2005.
  • 2Karaboga D, Akay B. A comparative study of artificial bee colony algorithm [ J ]. Applied mathematics and computation,2009,214( 1 ) :108-132.
  • 3Ye Zhiwei, Zeng Mengdi. Image enhancement based on artificial bee colony algorithm and fuzzy set [ C ]//Proc of international symposium on information engineering and electronic commerce. Hubei, China: [ s. n. ] ,2011 : 127-130.
  • 4肖永豪,余卫宇.基于蜂群算法的图像边缘检测[J].计算机应用研究,2010,27(7):2748-2750. 被引量:28
  • 5何志明,马苗.基于灰色关联分析和人工蜂群算法的图像匹配方法[J].计算机技术与发展,2010,20(10):78-81. 被引量:6
  • 6胡中华,赵敏.基于人工蜂群算法的TSP仿真[J].北京理工大学学报,2009,29(11):978-982. 被引量:63
  • 7Omakar S N, Senthilnath J, Khandelwal R, et al. Artifi- cial bee colony for multi-objective design optimization of composite structures[ J ]. Applied soft computing, 2011,11 ( 1 ) :489-499.
  • 8刘勇,马良.函数优化的蜂群算法[J].控制与决策,2012,27(6):886-890. 被引量:18
  • 9李林菲,马苗.基于ABC算法的逻辑推理题快速求解方法[J].计算机技术与发展,2011,21(6):125-127. 被引量:6
  • 10Wang Hsin-Chih,Wang Yucheng. Performance compar- isons of genetic algorithm and artificial bee colony algo- rithm applications for localization in wireless sensor net- works[ C]//Proc of 2010 international conference on system science and engineering. Wuhan, China: [ s. n. ], 2010:469-474.

二级参考文献85

共引文献177

同被引文献21

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部