摘要
协同过滤算法被成功的应用于个性化推荐系统中。但是传统的协同过滤算法没有考虑用户兴趣会根据时间的推移发生兴趣偏移问题,导致推荐系统的推荐质量下降,而且随着数据量的不断增大,传统的基于单机模式的推荐计算模式已经无法适应大数据。针对该问题,提出了在Hadoop分布式环境下基于时间加权的协同过滤算法设计和实现,实验表明,改进的算法可以在Hadoop分布式环境下对海量数据进行计算生成推荐结果,而且提高了推荐系统的推荐质量。
出处
《信息通信》
2014年第3期72-72,共1页
Information & Communications