期刊文献+

眼动行为数据挖掘在提取网上购物决策因子中的应用 被引量:2

Application of eye movement behavior data mining in identifying decision factors on online shopping
下载PDF
导出
摘要 为研究眼动行为数据挖掘在提取网上购物决策因子中的应用,首先通过客户体验管理(Customer Experience Management,CEM)对客户网上购物决策因子进行初步分析和过滤;然后根据大量客户网上购物时的人机交互行为数据,应用马尔科夫链算法预测其相关行为,并结合行为分析进一步得到其重要影响因子;最后通过眼动行为数据挖掘,确认影响网上购物的主决策因子,并获取各主决策因子的权重.实验证明由眼动分析获取的网上购物主决策因子及其权重更加有效. To study the application of eye movement behavior data mining in identifying decision factors on online shopping, the preliminary analysis and filtering of decision factors on online shopping are made by Customer Experience Management (CEM). Then, based on a large amount of online shoppers' hu- man-computer interactive behavior data, the behaviors related with online shopping are predicted using Markov chain algorithm, and then the more important decision factors are further identified by analyzing the behaviors. Finally, through eye movement behavior data mining, the main decision factors on online shopping are confirmed and their weights are obtained. Experiments show that the main decision factors on online shopping and their weights obtained by the eye movement analysis are more effective.
出处 《上海海事大学学报》 北大核心 2014年第1期60-64,共5页 Journal of Shanghai Maritime University
基金 国家自然科学基金(71201099) 上海市浦江人才计划(13PJC066) 上海市教育委员会科研创新项目(14YZ111)
关键词 客户体验管理 马尔科夫链 眼动行为 决策因子 customer experience management Markov chain eye movement behavior decision factor
  • 相关文献

参考文献11

  • 1RYEN W W. The use of implicit evidence for relevance feedback in Web retrieval[ J]. Lecture Notes in Comput Sci, 2002, 2291 : 449-479.
  • 2ZIGORIS P, ZHANG Y. Bayesian adaptive user profiling with explicit & implicit feedback [ C ]//Proe 15th ACM Int Conf Inform & Knowledge Man- age, ACM, 2006: 397-404.
  • 3施笑畏,宓为建,苌道方,张艳.基于模糊逻辑的多代理推荐系统[J].上海海事大学学报,2011,32(4):71-75. 被引量:1
  • 4王贤文,徐申萌.中国C2C淘宝网络店铺的地理分布[J].地理科学进展,2011,30(12):1564-1569. 被引量:56
  • 5SCHMITT B H. Customer experience management: a revolutionary approach to connecting with your customers[ M ]. New Jersey: Wiley, 2003: 234-238.
  • 6GILKS W R, RICHARDSON S, SPIEGELHALTER D J. Markov chain Monte Carlo in practice[ M]. London: Chapman & Hall, 1996: 56-60.
  • 7HUANG J, WHITE R W, DUMAIS S. No clicks, no problem: using cursor movements to understand and improve search [ C ]//Proc SIGCHI Conf Human Factors Computing Systems, ACM, 2011 : 1225-1234.
  • 8BALL L J, LUCAS E J, MILES J N V, et al. Inspection times and the selection task: what do eye-movements reveal about relevance effects? [ J] Q J Exp Psychol, 2003, 56(6) : 1053-1077.
  • 9DIXSON B J. Eye tracking reveals men's appreciation of the female form[J]. Human Natural, 2010, 21: 355-370.
  • 10PUOLAMAKI K, AJANKI A, KASKI S. Learning to learn implicit queries from gaze patterns[ C]//Proc 25th Int Conf Machine Learning, ACM 2008 : 760-767.

二级参考文献28

  • 1陈向平,范炳全,董洁霜.国外城市商业区位相关理论研究的进展[J].上海理工大学学报(社会科学版),2003,25(1):14-17. 被引量:6
  • 2陈倩倩,王缉慈.论创意产业及其集群的发展环境——以音乐产业为例[J].地域研究与开发,2005,24(5):5-8. 被引量:98
  • 3杨神化,施朝健,刘宇宏,胡勤友.多agent理论和技术在自动避碰决策系统中的应用[J].上海海事大学学报,2007,28(1):121-125. 被引量:7
  • 4Iresearch.2008-2009年中国网络购物行业发展报告[EB/OL].2009-2-24[2010-10-12].http://www.iresearch.com.cn.2009.
  • 5Yoshio A, Kazuhiro S. Concentrations of call centers in peripheral areas: Cases in Japan. Networks and Commu- nication Studies, 2003, 17(3-4): 187-202.
  • 6Monsuwe T, Dellaert B, Ruyter K. What drives consum- ers to shop online? A literature review. International Jour- nal of Service Industry Management, 2004, 15(1): 102-121.
  • 7Haubl G, Trifts V. Consumer decision making in online shopping environments: The effects of interactive deci- sion aids. Marketing Science, 2000, 19(1): 4-21.
  • 8Bhatnagar A, Misra S, Rao HR. On risk, convenience, and Intemet shopping behavior: Why some consumers are online shoppers while others are not. Communica- tions of the Acm, 2000, 43(11): 98-105.
  • 9Limayem M, Khalifa M, Frini A. What makes consumers buy from Internet? A longitudinal study of online shop- ping. Ieee Transactions on Systems Man and Cybernetics Part A: Systems and Humans, 2000, 30(4): 421-432.
  • 10Gefen D, Karahanna E, Straub D W. Trust and TAM in online shopping: An integrated model. Mis Quarterly, 2003, 27(1): 51-90.

共引文献55

同被引文献27

  • 1Lee U ,Liu Z ,Cho J. Automatic identification of user goals in web search [ C ]//Proceedings of the 14th International Conference on World Wide Web. New York:ACM ,2005:391-400.
  • 2Li X ,Wang Y Y, Acero A. Learning query intent from regularized click graphs[ C]//Proceedings of the 31st Annual International ACM SIGIR Conference on Research and Development in Infor- mation Retrieval. New York : ACM ,2008:339-346.
  • 3Shen Y, Yan J, Ji L, et al. Sparse hidden-dynamics conditional random fields for user intent understanding[ C ]//Proceedings of the 20th International Conference on World Wide Web. New York :ACM ,2011:7-16.
  • 4Agichtein E, Brill E, Dumais S, et al. Learning user interaction models for predicting web search result preferences [ C ] //Pro- ceedings of the 29th Annual International ACM S1G1R Confer- ence on Research and Development in Information Retrieval. New York : ACM ,2006:3-10.
  • 5Hassan A, Jones R, Klinkner K L. Beyond dcg:aser behavior as a predictor of a successful search [ C ] // Proceedings of the 3rd ACM International Conference on Web Search and Data Mining. New York : ACM ,2010:211-230.
  • 6Moshfeghi Y, Jose J M. On cognition, emotion, and interaction as- pects of search tasks with different search intentions [ C ] // Pro- ceedings of the 22nd International Conference on World Wide Web. New York : ACM ,2013:931-942.
  • 7Wang K, Gloy N, Li X. Inferring search behaviors using partially observable markov (pore) model [ C ] // Proceedings of the 3rd ACM International Conference on Web Search and Data Mining. New York : ACM ,2010:211-220.
  • 8Guo Q, Agichtein E. Exploring mouse movements for inferring query intent[ C] // Proceedings of the 31 st Annual International ACM S1G1R Conference on Research and Development in Infor- mation Retrieval. New York : ACM ,2008:707-708.
  • 9Guo Q, Agichtein E. Ready to buy or just browsing? : detecting web searcher goals from interaction data [ C ] // Proceedings of the 33rd International ACM SIG1R Conference on Research and De- velopment in Information Retrieval. New York: ACM, 2010: 130-137.
  • 10Arguello J. Predicting search task difficulty [ C ] //Proceedings of the 36th European Conference on IR Research. Switzerland: Springer International Publishing,2014:88-99.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部