期刊文献+

航天员低重力步行训练被动外骨骼机器人模拟 被引量:6

A Passive Exoskeleton Robotic Simulator for Reduced-Gravity Locomotion Training of Astronaut
下载PDF
导出
摘要 针对月球或火星登陆航天员在地面进行低重力步行模拟训练的需要,提出一种采用被动重力平衡技术的外骨骼机器人系统。该系统由一台跑步机和一套可穿戴的被动机械外骨骼组成,通过将人体各主要部件的重力按比例分布转嫁到外骨骼上来达到低重力模拟效果,因此其不但可以平衡任意比例(0%-100%)的人体重力,而且可以使受训者感受到各主要关节失去相同比例重力载荷的效果,从而达到逼真模拟低重力步行。由于系统完全被动,无需施加主动关节控制力矩,同时也不用进行关节运动的离线或在线精确规划,从而避免了复杂的关节控制器及其稳定性设计和分析。动力学仿真结果表明,该外骨骼机器人系统能够逼真地模拟出不同重力条件下的步行效果。 An exoskeleton robotic system based on the passive gravity compensation technique is proposed to assist the physical simulation of reduced-gravity locomotion for the on-earth training of astronauts walking on the moon or Mars. This innovative simulation system based on the exoskeleton robotics and the passive gravity compensation technique is composed of a treadmill and a wearable passive exoskeleton mechanism for balancing any amount (from 0% to 100% ) of the gravity of human body and its limbs so that a person wearing such a passive exoskeleton will experience a realistic reduced gravity feeling when he/she moves in the treadmill. Because the proposed exoskeleton robot is completely passive, no active joint control torques are required, and it need not to consider the problem of joint control system design and its stability issue. Dynamics simulation results demonstrate that the proposed passive exoskeleton robotic simulator is capable of simulating reduced gravity locomotion for astronaut in different levels of gravity.
作者 乔兵 陈卓鹏
出处 《宇航学报》 EI CAS CSCD 北大核心 2014年第4期474-480,共7页 Journal of Astronautics
关键词 航天员训练 外骨骼机器人 被动重力平衡 低重力步行 Astronaut training Exoskeleton robot Passive gravity balancing Reduced-gravity locomotion
  • 相关文献

参考文献21

  • 1Strauss S, Krog R L, Feiveson A H. Extravehicular mobility unit training and astronaut injuries [ J ]. Aviation, Space, and Environmental Medicine, 2005, 76 (5) : 469 - 474.
  • 2Moore S K, Gast M A. 21st century extravehicular activities: synergizing past and present training methods for future space walking success[ J ]. Aeta Astronautiea, 2010, 67 : 739 - 752.
  • 3中国人民解放军总装备部军事训练教材编写委员会,载人航天环境模拟技术[M].国防工业出版社,2006.
  • 4Totman C A, Humphreys simulations of ISS exercise centers exerclse B T, Sheehan C, et al. Ground-based at NASA glenn research laboratory-compliant interface dynamics using a floating treadmill [ C ]. 46th MAA Aerospace Sciences Meeting and Exhibit, 7 - 10 January 2008, Reno, Nevada.
  • 5Davis B L, Cavanagh P R, Sommcr H J, et al. Ground reaction forces during locomotion in simulated microgravity [ J ]. Aviation, Space and Environmental Medicine, 1996, 67 (3) : 235 -242.
  • 6Cavanagh P R, Polliner I J, Davis B L. Design principles for a zero gravity locomotion simulator [ C ]. The XIhh International Congress of Biomechanics, 1989.
  • 7http ://www. nasa. gov/centerJjohnsort/engineering/integrated_ environments/aetive_response_gravity/index, html.
  • 8Ma O, Lu Q, McAvoy J, et al. Concept study of a passive reduced-gravity simulator for training astronauts[C]. The ASME 2010 International Design Engineering Technical Conferences & Computers Information in Engineering Conference, 1 - 10, 2010.
  • 9张崇峻,王武义,刘海春,等.航天器对凄试验台主动对接环失重模拟技术研究[J].字航学报,2005,26(2):236-238.
  • 10Russo A, Sinatra R, Xi F. Static balancing of parallel robots [ J ]. Mechanism and Machine Theory, 2005, 40(2) : 191 -202.

同被引文献33

引证文献6

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部