期刊文献+

面向供应链的产品评论中客户关注特征挖掘方法研究 被引量:4

Mining Customer Focus Features from Product Reviews Oriented Supply Chain
原文传递
导出
摘要 【目的】针对电子商务平台的中文产品评论,提出一种面向供应链的客户关注特征挖掘方法。【方法】以产品评论数据预处理方法为核心,改进关联规则挖掘产品特征方法。预处理技术包括产品评价概念树、产品评价特征库和MA_Apriori算法。数据实验以京东商城平板电脑为例,在Weka环境中完成客户关注特征的挖掘。【结果】实验表明,对于相同的事务文件,采用数据预处理再进行关联规则的产品特征挖掘,特征查全率为90.5%,而关联规则挖掘方法查全率仅为71.4%。并且本方法可实现产品特征挖掘结果的层次化和规范化。【局限】需要进一步补充汉语分词系统的用户词典,添加产品领域相关的专业词汇,以提高分词准确性。【结论】本方法有助于供应链各节点企业灵活选择产品评价概念层次,从而有针对性地实施产品改进和服务提升。 [Objective] This paper proposes a customer focus feature mining method oriented supply chain. [Methods] The association rule mining is improved by adding data preprocessing, which includes product evaluation conception tree, product evaluation feature database and MA Apriori algorithm. Based on the data of tablet PC of Jingdong Mall, the data experiment mines the customer focus features in Weka. [Results] The experiments show that the recall radio of new method is 90.50, but the association rule method is 71.4%. In addition, it can get the hierarchical and standardized products features. [Limitations] Considering the accuracy of word segmentation, the user dictionary of segmentation system needs to be replenished by adding the product professional vocabulary. [Conclusions] This paper can help each enterprise select the product evaluation conception hierarchies flexibly, then improve the qualities of products and service.
作者 郝玫 王道平
出处 《现代图书情报技术》 CSSCI 北大核心 2014年第4期65-70,共6页 New Technology of Library and Information Service
基金 国家自然科学基金项目"敏捷供应链知识服务网络形成 演化与治理机制研究"(项目编号:71172169)的研究成果之一
关键词 产品评价概念树 客户关注特征 关联规则 数据挖掘 供应链 Product evaluation conception tree Customer focus feature Association rule Data mining Supply chain
  • 相关文献

参考文献6

二级参考文献105

共引文献417

同被引文献77

  • 1朱嫣岚,闵锦,周雅倩,黄萱菁,吴立德.基于HowNet的词汇语义倾向计算[J].中文信息学报,2006,20(1):14-20. 被引量:327
  • 2娄德成,姚天昉.汉语句子语义极性分析和观点抽取方法的研究[J].计算机应用,2006,26(11):2622-2625. 被引量:64
  • 3黄果,周竹荣.基于领域本体的概念语义相似度计算研究[J].计算机工程与设计,2007,28(10):2460-2463. 被引量:67
  • 4Chevalier J A, Mayzlin D. The Effect of Word of Mouth on Sales: Online Book Reviews [J]. Journal of Marketing Research, 2006, 43(3): 345-354.
  • 5Dellarocas C, Zhang X Q, Awad N F. Exploring the Value of Online Product Reviews in Forecasting Sales: The Case of Motion Pictures [J]. Journal of Interactive Marketing, 2007, 21(4): 23-45.
  • 6Mudambi S M, Schuff D. What Makes a Helpful Online Review? A Study of Customer Reviews on Amazon.corn [J]. MIS Quarterly, 2010, 34(1): 185-200.
  • 7ICTCLAS [EB/OL]. [2014-11-28]. http://ictclas.nlpir.org/.
  • 8HIT-CIR Tongyici Cilin (Extended) [EB/OL]. [2014-11-28]. http ://ir.hit.edu.cn/demo/ltp/Sharing_Plan.htm.
  • 9中国互联网信息中心,2013年中国互联网络发展状况统计报告[EB/OL].[2014-07-18].http://www.ennic.net.cn.
  • 10Popescu A M, Etzioni O. Extracting product features and opinions from review[ C ]//Proceedings of the Conference on Human Lan- guage Technology and Empirical Methods in Natural Language Pro- cessing. Stroudsburg: Association for Computational Linguistics, 2005, 339 - 346.

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部