期刊文献+

机器人逆运动学的奇异鲁棒性算法 被引量:6

Singularity Robustness Algorithm for Robot Inverse Kinematics
下载PDF
导出
摘要 为了解决机器人逆运动学数值解法中的雅可比矩阵奇异性问题,提出了一种新的奇异处理算法。在阻尼最小二乘法的基础上,利用雅可比矩阵奇异值分解,构建了一个新的奇异性指标——第二条件数k2,弥补了条件数k对奇异性表示的不全面性,并通过实验验证了k2的实用性和准确性,继而基于k2提出了一种新的阻尼系数自适应调整方法,增强了逆解算法的奇异鲁棒性。实验及仿真结果验证了算法的有效性,即在奇异点附近求逆稳定,各关节运动连续平稳。 In order to solve the singularity problem of Jacobian matrix in the inverse kinematics numerical solutions, an algorithm for singular handling was proposed. Based on the damped least- square method,by Jacobi singular value decomposition,the second condition number kz was made up as a new singular index,which compensated the deficiency of condition number k representing the sin- gularity. Experiments verified the practicability and accuracy of k2. A new self-adaptive adjustment of the damped coefficient was proposed related to kz and strengthened the singularity robustness of in- verse kinematics algorithm. Experimental and simulation results were presented to verify the validity of the proposed algorithm. The contrast results show that the algorithm is stable near singular points, and that the continuity and stableness of the joints motion are guaranteed.
出处 《中国机械工程》 EI CAS CSCD 北大核心 2014年第8期995-1000,共6页 China Mechanical Engineering
基金 国家科技重大专项(2010ZX04008-041)
关键词 逆运动学 阻尼最小二乘 条件数 奇异性 inverse kinematics damped least-square condition number singularity
  • 相关文献

参考文献10

  • 1Nakamura Y, Hanafusa H. Inverse Kinematic Solu tions with Singularity Robustness for Robot Manip ulator Control[J]. ASME Journal of Dynamic Sys terns, Measurement and Control, 1986, 108.. 163- 171.
  • 2刘玮,常思勤.一种新型并联机器人的奇异性与工作空间研究[J].中国机械工程,2012,23(7):786-790. 被引量:8
  • 3Angeles J,Rojas A. Manipulator Inverse Kinematics via Condition-number Minimization and Continua- tion[J]. Int. J. Robotics and Automation, 1987, 2(2) :61-69.
  • 4朱向阳,钟秉林,熊有伦.机器人运动学反解中的奇异点处理[J].机器人,1996,18(5):264-267. 被引量:10
  • 5吴剑威,史士财,刘宏.自由飘浮空间机器人笛卡尔避奇异运动规划[J].华中科技大学学报(自然科学版),2009,37(11):5-8. 被引量:7
  • 6Chiaverini S, Siciliano B. Review of the Damped Least- squares Inverse Kinematics with Experiments on an In- dustrial Robot Manipulator[J]. IEEE Transactions on Control Systems Technology, 1994,2 ( 2 ) : 123-134.
  • 7Bensalah C, Abderrahim M. A New Finger Inverse Kinematics Method for an Anthropomorphic Hand [ C]//IEEE International Conference on Robotics and Biomimetics. Karon Bead,2011..1314-1319.
  • 8Choi H B, Lee S. Minimum Infinity-norm Joint Ve- locity Solutions for Singularity-robust Inverse Kine- matics[J]. International Journal of Precision Engi- neering and Manufacturing,2011,12(3) :469-474.
  • 9李诚,谢志江,倪卫,刘楠.六自由度装校机器人雅可比矩阵的建立及奇异性分析[J].中国机械工程,2012,23(10):1165-1169. 被引量:24
  • 10Fang Y F,Tsai L W. Inverse Velocity and Singu- larity Analysis of Low-DOF Serial Manipulators [J]. Journal of Robotic Systems, 2003,20 (4) : 177- 188.

二级参考文献24

共引文献42

同被引文献35

  • 1孔民秀,季晨.基于单位四元数机器人姿态插补算法[J].新型工业化,2013,2(8):105-112. 被引量:10
  • 2孙立宁,杨东海,杜志江,张剑.遥操作正骨机器人虚拟手术仿真系统研究[J].机器人,2004,26(6):533-537. 被引量:8
  • 3朱向阳,钟秉林,熊有伦.机器人运动学反解中的奇异点处理[J].机器人,1996,18(5):264-267. 被引量:10
  • 4殷跃红,朱剑英,尉忠信.机器人力控制研究综述[J].南京航空航天大学学报,1997,29(2):220-230. 被引量:25
  • 5Nakamura Y, Hanafusa H. Inverse kinematic solutions with singu- larity robustness for robot manipulator control [ J ]. Journal of Dy- namic Systems, Measurement, and Control, 1986,108 ( 3 ) : 163 - 17l.
  • 6Wampler C W. Manipulator inverse kinematic solutions based on vector formulations and damped least-squares methods [ J ]. Sys- tems, Man and Cybernetics, IEEE Transactions on,1986,16( 1 ) : 93 - 101.
  • 7Buss S R, Kim J S. Selectively damped least squares for inverse ki- nematics[J]. Journal of graphics, gpu, and game tools,2005,10(3) :37 -49.
  • 8Phuoc L M, Martinet P, Lee S, et al. Damped least square based genetic algorithm with Ggaussian distribution of damping faetor for singularity-robust inverse kinematics [ J ]. Journal of Mechanical Science and Technology, 2008, 22(7) : 1330 -1338.
  • 9Choi H B, Lee S, Lee J. Minimum infinity-norm joint velocity so- lutions for singularity-robust inverse kinematics [ J ]. International Journal of Precision Engineering and Manufacturing, 2011, 12 ( 3 ) : 469 - 474.
  • 10Merikoski J K, Urpala U, Virtanen A, et al. A best upper bound for the 2-norm condition number of a matrix [ J ]. Linear algebra and its applications, 1997, 254( 1 ) : 355 -365.

引证文献6

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部