期刊文献+

羟基磷灰石形貌对RAW264.7细胞破骨分化影响研究

Effect of different hydroxyapatite shapes on osteoclastogenesis of RAW264.7 cells in vitro
下载PDF
导出
摘要 目的分析羟基磷灰石(HAp)不同形貌对小鼠单核RAW264.7细胞破骨分化性能的影响。方法采用水热合成及pH调节的方法获得不同形貌羟基磷灰石微米颗粒,通过扫描电子显微镜(SEM)表征材料形貌。将不同形貌HAp与RAW264.7细胞共培养,通过Live/Dead活性染色检测HAp对细胞活性有无影响;并在RANKL破骨诱导因子的作用下通过抗酒石酸酸性磷酸酶(TRAP)染色、实时荧光定量(qRT-PCR)分析不同形貌HAp对RAW264.7细胞破骨分化的影响。结果 24h Live/Dead活性染色证实微棒与微球HAp均具有良好的生物相容性。qRT-PCR结果表明,两种形貌HAp均抑制RAW264.7细胞的破骨分化,而相对于微球HAp,微棒HAp抑制作用较显著。结论羟基磷灰石形貌的差异能够引起RAW264.7破骨分化性能的差异表达。 Objective To investigate the effect of different hydroxyapatite shapes on osteoclastogenesis of RAW264.7cells. Methods Hydroxyapatite with different shapes was synthesized through a hydrothermal treatment with further pH adjustments, and characterized by filed scanning electron microscope(SEM).Live/Dead staining was performed to evaluate the cell viability of different hydroxyapatites co-cultured with RAW264.7 cells. Tartrate-resistant acid phosphatase (TRAP) staining and quantitative RT- PCR (qRT-PCR) analysis were used to identify osteoclastogenesis and investigate transcriptional changes of osteoclastogenesis-related genes, under the stimulation of the receptor activator of nuclear factor-r,B ligand (RANKL) in vitro. Results Live/Dead staining validated that the microrod and microsphere HAp particles were biocompatible and no difference of cell viability was detected between two particles after 24h co-cultttre. The qRT-PCR results showed that the two shaped HAp particles significantly inhibited the RANKL-induced osteoclastogenesis of RAW264.7 cells, especially for micrord particles compared to that of microsphere ones. Conclusions Hydroxyapatites with different shapes could initiate different degree on osteoclastogenesis of RAW264.7cells.
出处 《中国临床解剖学杂志》 CSCD 北大核心 2014年第2期170-173,共4页 Chinese Journal of Clinical Anatomy
基金 国家重点基础研究发展计划(2012CB619100) 国家自然科学基金(81171724) (81371924) 国家863计划(2012AA020504)
关键词 羟基磷灰石 形貌 RAW264 7 破骨分化 Hydroxyapatite Shape RAW264.7 Osteoclastogenesis
  • 相关文献

参考文献11

  • 1Zhou H, Lee J. Nanoscale hydroxyapatite particles for bone tissue engineering[J]. Acta Biomater,2011,7(7):2769-2781.
  • 2Goodman SB, Gibon E, Yao Z. The basic science of periprosthetic osteolysis[J]. Instr Course Lect,2013,62:201-206.
  • 3Abu-Amer Y, Darwech i, Clohisy JC. Aseptic loosening of total joint replacements: mechanisms underlying osteolysis and potential therapies [J]. Arthritis Res Ther,2007,9(Suppl 1):$6.
  • 4Pioletti DP, Kottelat A. The influence of wear particles in the expression of osteoclastogenesis factors by osteoblasts[J]. Biomaterials, 2004,25(27):5803-5808.
  • 5Boyle WJ, Simonet WS, Lacey DL. Osteoclast differentiation and activation[J]. Nature,2003,423(6937):337-342.
  • 6Liu Y, Shelton R, Gbureck U, et al. Influence of calcium phosphate crystal morphology on the adhesion, spreading, and growth of bone derived cells[J]. J Biomed Mater Res A,2009,90(4):972-980.
  • 7Wang H, Li Y, Zuo Y, et al. Biocompatibility and osteogenesis of biomimetic nano-hydroxyapatite/polyamide composite scaffolds for bone tissue engineering[J]. Biomaterials,2007,28(22):3338-3348.
  • 8Jiang , Jia T, Wooley PH, et al. Current research in the pathogenesis of aseptic implant loosening associated with particulate wear debris[J]. Acta Orthop Belg,2013,79(1): 1-9.
  • 9Haynes DR, Crotti TN, Potter AE, et al. The osteoclastogenic molecules RANKL and RANK are associated with periprosthetic osteolysis[J]. J Bone Joint Surg Br,2001,83(6):902-911.
  • 10Cao X. Targeting osteoclast-osteoblast communication[J]. Nat Med, 2011,17(11): 1344-1346.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部