期刊文献+

丛枝菌根真菌对枳根系形态和蔗糖、葡萄糖含量的影响 被引量:31

Effects of arbuscular mycorrhizal fungi on root system morphology and sucrose and glucose contents of Poncirus trifoliata
原文传递
导出
摘要 研究丛枝菌根真菌接种(摩西球囊霉、地表球囊霉和摩西球囊霉+地表球囊霉)对盆栽枳的生长、根系形态以及蔗糖、葡萄糖含量的影响.结果表明:3个接种处理都显著提高枳的株高、茎粗、叶片数,以及地上部和地下部生物量,诱导l级、2级和3级侧根的发生,同时增加了根系投影面积、表面积、体积和总长度(主要是0—1cm根长),但降低根系平均直径,其中以地表球囊霉效果最明显.丛枝菌根真菌接种显著提高枳的叶片蔗糖和根系葡萄糖含量,但降低叶片葡萄糖和根系蔗糖含量.由于根系“菌根碳库”的存在,丛枝菌根真菌接种导致根系维持较高的葡萄糖和较低的蔗糖含量,从而有利于宿主根系的生长和发育,建立更优的根系形态. The effects of inoculation with Glomus mosseae, G. versiforme, and their mixture on plant growth, root system morphology, and sucrose and glucose contents of trifoliate orange (Poncirus tri- foliata L. ) were studied by pot culture. The results showed that all the inoculated treatments signif- icantly increased the plant height, stem diameter, leaf number, and shoot and root biomass. In ad- dition, the mycorrhizal treatments significantly increased the number of 1st, 2nd, and 3rd lateral roots. Inoculation with arbuscular mycorrhizal fungi significantly increased the root projected area, surface area, volume, and total root length (mainly 0-1 cm root length), but decreased the root average diameter. Meanwhile, G. versiforme showed the best effects. Mycorrhizal inoculation signif- icantly increased the leaf sucrose and root glucose contents, but decreased the leaf glucose and root sucrose contents. Owing to the ' mycorrhizal carbon pool' in roots, inoculation with arbuscular my- corrhizal fungi resulted in high glucose content and low sucrose content of roots, which would facili- tate the root growth and development, thereby the establishment of better root system morphology of host plants.
出处 《应用生态学报》 CAS CSCD 北大核心 2014年第4期1125-1129,共5页 Chinese Journal of Applied Ecology
基金 国家自然科学基金项目(31101513 31372017) 湖北省自然科学基金重点项目杰出青年人才基金(2012FFA001) 长江大学优秀青年教师科研支持计划项目(cyq201324 cyq201326)资助
关键词 丛枝菌根真菌 根系形态 葡萄糖蔗糖 Poncirus trifoliata arbuscular mycorrhizal fungi root system morphology glucose sucrose.
  • 相关文献

参考文献25

  • 1de Dorlodot S, Forster B, Pages L, et al. Root system architecture: Opportunities and constraints for genetic improvement of crops. Trends in Plant Science, 2007, 12 : 474-481.
  • 2To JPC, Zhu JM, Benfey PN, et al. Optimizing root system architecture in biofuel crops for sustainable ener- gy production and soil carbon sequestration. F1000 Biology Reports, 2010, 2: 65. doi: 10.3410/B2-65.
  • 3Wu Q-S(吴强盛).Arbuscular Mycorrhizal Research and Application of Horticultural Plants. Beijing: Science Press, 2010.
  • 4田蜜,陈应龙,李敏,刘润进.丛枝菌根结构与功能研究进展[J].应用生态学报,2013,24(8):2369-2376. 被引量:46
  • 5Norman JR, Atkinson D, Hooker JE, et al. Arbuscular mycorrhizal fungi-induced alteration to root architecture in strawberry and induced resistance to the root pathogen Phytophthora fragariae. Plant and Soil, 1996, 185: 191-198.
  • 6Aguin O, Mansilla JP, Vilarioo A, et al. Effects of my- eorrhizal inoculation on root morphology and nursery pro- duction of three grapevine rootstocks. American Journal of Enology and Viticulture, 2004, 55:108-111.
  • 7Zangaro W, de Assis RL, Rostirola LV, et al. Changes in arbuscular mycorrhizal associations and fine root traits in sites under different plant successional phases in southern Brazil. Mycorrhiza, 2008, 19 : 37-45.
  • 8Wu Qs, He XH, Zou YN, et al. Arbuscular mycorrhi- zas alter root system architecture of Citrus tangerine through regulating metabolism of endogenous poly- amines. Plant Growth Regulation, 2012, 68:27-35.
  • 9Wu QS, Li GH, Zou YN. Improvement of root system architecture in peach (Prunus persica) seedlings by ar- buscular mycorrhizal fungi, related to allocation of glu- cose/sucrose to root. Notulae Botanicae Horti Agrobo- tanici Chcj-Napoca, 2011, 39 : 232-236.
  • 10Bago B, Pfeffer PE, Abubaker J, et al. Carbon export from arbuscular mycorrhizal roots involves the transloca- tion of carbohydrate as well as lipid. Plant Physiology, 2003, 131:1496-1507.

二级参考文献122

共引文献221

同被引文献450

引证文献31

二级引证文献228

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部