期刊文献+

携带增强型绿色荧光蛋白的慢病毒载体转染大鼠脂肪干细胞 被引量:5

Rat ADSCs transfected by lentivirus vector-mediated enhanced green fluorescent protein
原文传递
导出
摘要 目的探索脂肪干细胞(ADSCs)的标记方法,观察增强型绿色荧光蛋白(EGFP)阳性ADSCs(EGFP—ADSCs)的体外活性、干细胞特性及体内短期活性。方法用携带增强型绿色荧光蛋白(eGFP)基因的慢病毒载体(Lv-eGFP)在感染复数(MOI)为0、1、5、25、50、100时,转染SD大鼠ADSCs12h,荧光显微镜及流式细胞仪检测转染效率和荧光强度;Mrrr法评价转染后细胞活性;EGFP—ADSCs分别行成脂分化及油红O检测、成骨分化及茜素红染色;将EGFP—ADSCs注射到去细胞神经构建组织工程化神经,修复大鼠坐骨神经缺损,术后1周取材进行冰冻切片观察细胞在体内存活情况。结果转染4d后,EGFP阳性率及荧光强度达到高峰;EGFP基因表达不随细胞传代而消失。MOI=0、1、5、25、50、100时,EGFP阳性转染率分别为0.13%、31.09%、75.33%、92.66%、96.70%、98.38%。实验组阳性率与对照组(MOI=0)选择相比,差异均有统计学意义(P〈0.05);MOI=25、50、100时,组问阳性率差异无统计学意义(P〉0.05),但与MOI=1、5比时差异(P〈0.05)。MTT试验观察10d内MOI=25、50、100组细胞增值活性与非转染细胞差异无统计学意义(P〉0.05)。选择MOI=25作为最佳转染滴度进行后续实验。转染后ADSCs成骨、成脂分化20d,茜素红染色见橘红色钙沉积,油红O染色见橙红色脂滴。1周冰冻切片观察细胞于体内呈梭形,均匀分布。结论慢病毒载体转染EGFP基因不影响ADSCs活性及成骨成脂分化能力,能为组织工程化神经修复缺损提供示踪种子细胞的方法。 Objective To explore the labeling method of rat adipose-derived stromal cells, and observe the stem cell characteristics and the activities of EGFP-positive adipose-derived stromal cells (EGFP-ADSCs) in vitro and in vivo. Methods ADSCs were transfected for 12 h with enhanced green fluorescent protein gene (EGFP) carried by lentivirus(Lv-EGFP) vector at different value of MOI (0, 5, 10, 25, 50, 100,respectively). The rate of EGFP expression and fluorescence intensity were evaluated by flow eytometric analysis and fluorescence microscopy, and cell viability was detected by MTl'-test after transfection. Secondly, cells were exposed either to adipogenic medium or osteogenic medium, then stained with Oil Red O and Alizarin Red S. Cell growth was investigated on frozen longitudinal sections when EGFP-ADSCs were injected into acellnlar nerves to build tissue-engineered peripheral nerves repairing sciatic nerve defects in rats for 1 week in vivo. Results EGFP-positive rate and fluorescence intensity peak at 4 days after transfection. The rate of EGFP expression was 0. 13%, 31.09% , 75.33%, 92. 66% , 96.70% , 98.38% for MOI =0, 1, 5, 25, 50, 100, respectively. The positive rate between the experimental group and control ( MOI = 0) existed significantly difference ( P 〈 0.05 ) ; the difference between MOI = 1, 5 groups and MOI = 25, 50, 100 groups were also observed ( P 〈 0. 05 ). There was no statistical difference in EGFP-positive rate and cell proliferation activity among MOI =25, 50, 100 groups (P 〉0. 05). MOI =25 was chosen as best scheme to transfect ADSCs for subsequent experiments. Osteogenic and adipogenie differentiation for 20 days, orange calcium deposits,orange-red lipid droplets were seen in EGFP-ADSCs after Alizarin red and oil red 0 staining. At 1 week in vivo, EGFP-ADSCs evenly distributed and became fusiform on frozen longitudinal sections. Conclusion Lv-EGFP transfeetion does not affect the ADSCs activity and their osteogenic and adipogenic differentiation, so could be as a tracing method for ADSCs-tissue-engineered peripheral nerves repairing nerve defects.
出处 《中华显微外科杂志》 CSCD 北大核心 2014年第2期147-151,共5页 Chinese Journal of Microsurgery
基金 国家自然科学基金面上项目(31070869) 广东省科技计划项目(2010B031100006,2012B031800383)
关键词 脂肪干细胞 转染 绿色荧光蛋白 慢病毒载体 周围神经 Adipose derived stromal cells Transfection Green fluorescent protein Lentivirus vector Peripheral nerve
  • 相关文献

参考文献23

二级参考文献117

共引文献99

同被引文献57

  • 1李建军,赵群,王欢,杨军,原泉,崔少千,李雷.基因强化组织工程骨联合显微外科方法修复长段骨缺损的实验研究[J].中华显微外科杂志,2007,30(5):359-362. 被引量:4
  • 2Li Z, Hou T,Deng M, et al. The osteogenic efficacy of goat bonemarrow -enriched self-assembly peptide/deminergdized bone matrixin vitro and in vivo[J]. Tissue Eng Part A, 2015,21(8) : 1398-1408.DOI: 10.1089/ten.TEA.2014.0294.
  • 3Stephan SJ, Tholpady SS, Gross B, et al. Injectable tissue-engineeredbone repair of a rat calvarial defect [ J ]. Laryngoscope,2010,120(5):895-901. DOI: 10.1002/lary.20624.
  • 4Murphy MB, Suzuki R, Sand TT, et al. Sort term culture of humanmesenchymal stem cells with commercial osteoconductive carriersprovides unique insights into biocompatibility[J]. J Clin Med, 2013,2(3):49-66. D01:10.3390/jcm2030049.
  • 5Arvidson K, Abdallah BM, Applegate LA, et al. Bone regenerationand stem cells[J]. Cell Mol Med, 2011,15(4) :718-746. DOI: 10.1111/j.l582-4934.2010.01224.x.
  • 6Ye Q,Chen K, Huang W, et al. Osteogenic ability of bone marrowstem cells intraoperatively enriched by a novel matrix [J]. Exp TherMed, 2015,9(l):25-32. DOI: 10.3892/etm.2014.2067.
  • 7Xu YQ, Zhang J, Ma Y, et al. The role of adipose-derived stromalcells and hydroxypropylmethylcellulose in engineering cartilage tis-sue in vivo[J]. Cytotechnology, 2014,66(5):779-790. DOI: 10.1007/sl0616-013-9627-6.
  • 8Geng J,Liu G, Peng F, et al. Decorin promotes myogenic differen-tiation and mdx mice therapeutic effects after transplantation of ratadipose-derived stem cells[j]. Cytotherapy, 2012,14(7) : 877-886.DOI: 10.3109/14653249.2012. 688 944.
  • 9Peng R, Yao X, Cao B, et al. The effect of culture conditions onthe adipogenic and osteogenic inductions of mesenchymal stem cellson micropattemed surfaces [J]. Biomaterials,2012,33 (26) :6008-6019. D01:10.1016/j.
  • 10Chen JC, Jacobs CR. Mechanically induced osteogenic lineage com-mitment of stem cells[J]. Stem Cell Res Ther,2013,4(5) ; 107. DOI:10.1186/scrt318.

引证文献5

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部