期刊文献+

基于扇形偏好的期权定价方法 被引量:2

An option pricing method based on the fanning preference
下载PDF
导出
摘要 "波动率微笑"与资产收益的非正态分布一直是Black-Scholes期权定价模型无法解释的两种现象.为了改进该模型,一种基于交换经济的均衡模型孕育而生.但是传统均衡模型中所假设的预期效用函数无法区分投资人对于波动风险与跳跃风险的不同厌恶程度,从而低估了市场风险溢酬.引入基于扇形偏好的非预期效用函数后,均衡模型产生了由扇形效应所导致的部分风险溢酬,并且可以拟合出显著的波动率微笑曲线.同时,考虑扇形效应后,风险中性的资产收益分布出现了显著的"厚尾"与"左偏"特征. Empirical findings suggest two violations of the Black-Scholes model: the volatility smile and the asymmetrical distribution for underlying asset returns. Although stochastic volatility models based on the no-arbitrage theorem can explain these two phenomena,the alternative pricing method under general equilibrium framework has been seldom studied. The traditional equilibrium model incorporating the expected utility fails to differentiate the investor's different risk preferences towards the diffusive uncertainty and the jump risk. However,with the fanning preference,the model is able to capture an additional risk premium,and generates a pronounced volatility smile. On the other hand,adopting the fanning effect results in a leptokurtic and leftskewed distribution.
作者 陈坚
出处 《管理科学学报》 CSSCI 北大核心 2014年第3期27-36,共10页 Journal of Management Sciences in China
基金 国家自然科学基金资助项目(71201136)
关键词 股指期权 递归效用 扇形偏好 跳跃风险 stock index option recursive utility fanning preference jump risk
  • 相关文献

参考文献33

  • 1Bates D. Jumps and stochastic volatility: Exchange rate processes implicit in deutschemark option [ J ]. Review of Financial Studies, 1996, 9( 1 ) : 69 - 108.
  • 2Bates D. Post-87 crash fears in the S&PSO0 futures option market[J]. Journal of Econometrics, 2000, 94( 1 -2) : 181 - 238.
  • 3Bakshi G, Cao C, Chen Z. Empirical performanee of alternative option pricing models [ J ]. Journal of Finance, 2007, 52(5) : 2003 - 2049.
  • 4Pan J. The jump-risk premia implicit in options: Evidence from an integrated time-series study[ J ]. Journal of Financial E- conomies, 2002, 63 ( 1 ) : 3 - 50.
  • 5Huang J, Wu L. Specification analysis of option pricing models based on time-changed levy process [ J ]. Journal of Finance, 2004, 59(3) : 1405 -1439.
  • 6Carr P, Wu L. Time-changed levy process and option pricing[ J]. Journal of Financial Economics, 2004, 71 (1): 113 -141.
  • 7Santa-Clara P, Yan S. Crashes, volatility, and the equity premium : Lessons from S&P 500 options [ J ]. The Review of Eco- nomics and Statistics, 2010, 92(2): 435-451.
  • 8马宇超,陈敏,蔡宗武,张敏.中国股市权证定价的带均值回归跳跃扩散模型[J].系统工程理论与实践,2010,30(1):14-21. 被引量:15
  • 9周海林,吴鑫育,高凌云,陆凤彬.随机利率条件下的欧式期权定价[J].系统工程理论与实践,2011,31(4):729-734. 被引量:13
  • 10李平,曲博,黄光东.基于Fréchet Copula的欧式脆弱期权定价[J].管理科学学报,2012,15(4):23-30. 被引量:6

二级参考文献24

  • 1朱光,陈厚生,李平.基于Copula的极大和极小期权定价[J].统计与决策,2006,22(16):26-27. 被引量:6
  • 2张娟,金治明.随机利率下期权定价[J].经济数学,2006,23(3):261-266. 被引量:5
  • 3史道济,阮明恕,王毓娥.多元极值分布随机向量的抽样方法[J].应用概率统计,1997,13(1):75-80. 被引量:28
  • 4李淑锦.在随机利率条件下欧式期权、美式期权的定价及其期权定价理论的应用[D]浙江大学,浙江大学2005.
  • 5Niizeki M K.Option pricing models:Stochastic interest rates and volatilities. Economic Forum . 1999
  • 6Harrison JM,Kreps DM.Martingales and Arbitrage in Multiperiod Securities Markets. Journal of Econometrics . 1979
  • 7Geman H,EI Karoui N,Rochet J C.Changes of numeraire, changes of probability measure and option pricing. Journal of Applied Probability . 1995
  • 8Heath D,Jarrow R,Morton A.Bond pricing and the term structure of interest rates: a new methodology for contingent claims valuation. Econometrica . 1992
  • 9Vasicek O.An equilibrium characterization of the term structure. The Journal of Finance . 1977
  • 10M. Schroder.Changes of numeraire for pricing futures, forwards and options. Review of Finance . 1999

共引文献31

同被引文献25

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部