期刊文献+

多重渐消因子强跟踪SCKF及其在故障参数估计中的应用 被引量:8

Multiple fading factors strong tracking SCKF and its application in fault parameter estimation
下载PDF
导出
摘要 针对非线性系统中不可观测故障参数估计问题,提出基于多重渐消因子强跟踪平方根容积卡尔曼滤波(multiple fading factors strong tracking square-root cubature Kalman filter,MSTSCKF)的状态和参数联合滤波算法。MSTSCKF基于强跟踪滤波器理论框架,通过引入多重渐消因子实时调整增益矩阵,克服平方根容积卡尔曼滤波(square-root cubature Kalman filter,SCKF)在故障参数变化函数未知或者突变时滤波精度下降甚至发散的缺点,并兼具SCKF在非线性拟合精度和数值稳定性等方面的优点。仿真结果表明,相比SCKF和强跟踪无迹卡尔曼滤波(unscented Kalman filter,UKF),本文提出的方法具有更高的估计精度。 For unmeasured fault parameter estimation of nonlinear system, a state and parameter joint estimation algorithm based on multiple fading factors strong tracking square-root cubature Kalman filter (MSTSCKF) is presented. Under the basic theory framework of strong tracking filter, MSTSCKF introduces the multiple fading factors to adjust gain matrix in real time and avoids the problem that square-root cubature Kalman filter (SCKF) decreases in accuracy and even diverges when the changing function of fault parameters is unknown or fault parameters abruptly change. Meanwhile, MSTSCKF combines high nonlinear curve fitting and numerical stability of SCKF. The simulation results indicate that higher estimation accuracy is obtained compared with SCKF and strong tracking unscented Kalman filter (UKF).
出处 《系统工程与电子技术》 EI CSCD 北大核心 2014年第4期643-649,共7页 Systems Engineering and Electronics
基金 总装院校科技创新工程项目资助课题
关键词 强跟踪滤波 状态和参数联合估计 平方根容积卡尔曼滤波 故障参数 strong tracking filter state and parameter joint estimation square root cubature Kalman filter (SCKF) fault parameter
  • 相关文献

参考文献17

  • 1Benkouider A M, Buvat J C, Cosmao J M. , et al. Fault detection in semi-batch reactor using the EKF and statistical method[J]. Jourrlal of loss Prevention in the Process Industries, 2009, 22(2) : 153 - 161.
  • 2Benkouider A M, Kessas R, Yahiaoui A, et al. A hybrid approach to faults detection and diagnosis in batch and semi batch reactors by using EKF and neural network elassifier[J]. Journal of Loss Pre- vention in the Process Industries, 2012, 25(4): 694- 702.
  • 3Simon J J, Jeffrey K U. A new extension of the Kalman filter to nonlinear systems[C]//Proc, of the l lth International Sympo slum on Aerospace/ Defense Sensing, Simulation and Controls, 1997: 54-65.
  • 4Girish C, Ravindra J. Aerodynamic parameter estimation from flight data applying extended and unscented Kalman filter[J]. Aerospace Science and Technology, 2010, 14(2): 106-117.
  • 5Karami F, Poshtan J, Poshtan M. Detection of broken rotor bars in induction motors using nonlinear Kalman filters[J]. ISA Transactions, 2010, 49(2) : 189 - 195.
  • 6Amin M, Karim S. Fault diagnosis and accommodation of non linear systems based on multiple-model adaptive unscented Kalman filter and switched MPC and H infinity loop-shaping controller[J]. Journal oJ Process Control, 2012, 22(3) : 626 - 634.
  • 7谭红力,黄新生,岳冬雪.捷联惯导大失准角误差模型在快速传递对准中的应用[J].国防科技大学学报,2008,30(6):19-23. 被引量:10
  • 8Alrowaie F, Gopaluni R B, Kwok K E. Fault detection and isolation in stochastic non-linear statespace models using particle filters[J]. Control Engineering Practice, 2012, 20(10) :1016- 1032.
  • 9lenkaran A, Simon H. Cubature Kalman filters[J]. IEEE Trans. on Automatic Control, 2009, 54(6):1254-1269.
  • 10Tang X J, Liu Z B, Zhang J S. Square-root quaternion cubature Kalman filtering for spacecraft attitude estimation[J]. Acta Astronautica, 2012, 76:84 - 94.

二级参考文献28

  • 1潘泉,杨峰,叶亮,梁彦,程咏梅.一类非线性滤波器——UKF综述[J].控制与决策,2005,20(5):481-489. 被引量:231
  • 2王建林,于涛,金翠云.On-line Estimation of Biomass in Fermentation Process Using Support Vector Machine[J].Chinese Journal of Chemical Engineering,2006,14(3):383-388. 被引量:15
  • 3Kain J E, Cloutier J R. Rapid Transfer Alignment for Tactical Weapon Applications[ C]//Proceedings of the AIAA Guidance, Navigation and Control Conference, 1989: 1290-1300.
  • 4Shortelle K J, Graham W R, Raboum C. F-16 Hight Tests of a Rapid Transfer Alignment Procedture[C]//Position Location and Navigation Symposium, 1998:379 - 386.
  • 5Wendel J, Metzger J, Trommer G F. Rapid Transfer Alignment in the Presence of Time Correlated Measurement and System Noise[ C ]// AIAA Guidance, Navigation, and Control Conference and Exhibit, Providence, Rhode Island, 2004: 1 - 12.
  • 6Scherzinger B M. Inertial Navigator Error Models for Large Heading Uncertainty[ C]//PLANS'96, IEEE, 1996: 477- 484.
  • 7Kong X Y, Nebot E M, D-Whyte H. Development of a Nonlinear Psi-angle Model for large Misaligament Errors and Its Application in INS Alignment and Calibration[C]//Proceedings of the 1999 IEEE Int. conf. on Robotics & Automation, Detroit, Michigan, 1999: 1430- 1435.
  • 8Kim K, Park C G. In-flight Alignment Algorithm Based on Non-symmetric Unscented Transformation[C]// SICE-ICASE International Joint Conference 2006. Bexeo, Busan, Korea, 2006:4916-4920.
  • 9Shin E H, E-Sheimy N. An Unscented Kahnan Filter for In-motion Alignment of Low-cest IMUs[ C ]// IEEE, PLANS, 2004:273 - 279.
  • 10Hao Y, Xiong Z, Wang W, et al. Rapid Transfer Alignment Based on Unscented Kalman Filter[C]//Proccedings of the 2006 American Control Conference, Minneapolis USA, 2005:2215-2220.

共引文献287

同被引文献55

  • 1李劲.强跟踪Unscented滤波器及其在无源跟踪中的应用[J].电讯技术,2005,45(1):160-164. 被引量:2
  • 2郭俊宏,谭伟璞,杨以涵,郭芳霞,任杰.电力系统故障定位原理综述[J].继电器,2006,34(3):76-81. 被引量:39
  • 3李雄杰,周东华.基于强跟踪滤波器的模拟电路故障在线诊断方法[J].电工技术学报,2007,22(5):13-17. 被引量:6
  • 4BENKOUIDER A M, KESSAS R, YAHIAOUI A, et al. A hybrid approach to faults detection and diagnosis in batch and semi-batch reactors by using EKF and neural network classifier [ J ]. Journal of Loss Prevention in the Process Industries, 2012, 25 (4): 694-702.
  • 5KARAMI F, POSHTAN J, POSHTAN M. Detection of broken rotor bars in induction motors using nonlinear Kal- man filters [ J ]. ISA transactions, 2010, 49 ( 2 ) : 189-195.
  • 6ARASARATNAM I, HAYKIN S. Cubature kalman filters[ J]. IEEE Transactions on Automatic Control, 2009, 54(6) : 1254-1269.
  • 7ALROWAIE F, GOPALUNI R B, KWOK K E. Fault de- tection and isolation in stochastic non-linear state-space models using particle filters [ J ]. Control Engineering Practice, 2012, 20( 10): 1016-1032.
  • 8Eide P,Maybeck P S. An MMAE failure detection system forthe F-16[J]. IEEE Trans, on Aerospace and Electronic Sys-terns y 1996,32(3):1125 - 1136.
  • 9Maybeck P S. Multiple model adaptive algorithms for detectingand compensating sensor and actuator/surface failures in aircraftflight control systemsfj]. International Journal of Robust andNonlinear Control, 1999, 9(14) : 1051 - 1070.
  • 10Ducard G,Geering H P. Efficient nonlinear actuator fault detectionand isolation system for unmanned aerial vehicles [J]. Journal ofGuidance , Control and Dynamics , 2008, 31(1) :225 - 237.

引证文献8

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部