期刊文献+

对接端口间相对运动耦合动力学建模 被引量:3

Relative motion coupled dynamic modeling between two docking ports
下载PDF
导出
摘要 为提高对非合作目标在轨服务任务的成功率,本文建立了两航天器交会过程的非质心点间耦合相对运动动力学模型。从传统点质量相对运动模型入手,考虑两航天器相对姿态运动和服务航天器绝对姿态运动产生的耦合作用,建立对接端口间的耦合动力学模型。分析耦合作用的种类:航天器所受外力矩产生的动力学耦合;相对姿态四元数、相对姿态角速度和服务航天器绝对姿态角速度产生的运动学耦合。最后设计了滑模控制器,实现对接端口间无碰撞安全对接。数学仿真证明,该耦合作用在交会接近过程中具有显著影响,因此不可被忽略。 In order to improve the success rate of on orbit servicing missions for non-cooperative targets, a coupled relative motion dynamic model is established for two arbitrary points except center points of mass, during rendezvous and docking between a service spacecraft and a tumbling non cooperative target spacecraft. Starting from the traditional point-mass relative motion model, a coupled dynamic model is founded for the two doc king ports considering the coupling effect produced by relative attitude motion of the two spacecraft and absolute attitude motion of the service spacecraft. The type of coupling effect is analyzed: dynamic coupling effect in duced by external moment on spacecraft, kinematical coupling effect induced by relative attitude quaternion, relative attitude angular velocity and absolute attitude angular velocity of the service spacecraft. Finally, a sliding mode controller is designed to achieve safe docking between two docking ports without collision. Numerical simulation results demonstrate that the coupling effect on relative translation is so significant during close proximity and rendezvous that it can't be ignored.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2014年第4期714-720,共7页 Systems Engineering and Electronics
基金 国家自然科学基金(61104026) 国家高技术研究发展计划(863计划)(2011AA7026048)资助课题
关键词 航天器在轨服务 耦合动力学模型 非合作目标 相对转动 相对平动 spacecraft on orbit servicing coupled dynamic model non-cooperative target relative rotation relative translation
  • 相关文献

参考文献18

  • 1Long A M, Richards M G, Hastings D E. On orbit servicing.- a new value proposition for satellite design and operation [J]. Journal of Spacecraft and Rockets, 2007, 44(4) :964 - 976.
  • 2Miler K, Masciarelli J, Rohrschneider R. Advances in multi mission autonomous rendezvous and docking and relative naviga tion capabilities[C]// Proc. of the IEEE Aerospace Conference 2012,1 -9.
  • 3Lu W, Geng Y H, Chen X Q, et al. Relative position and atti rude coupled control for autonomous docking with a tumbling target[J]. International Journal of Control and Automation, 2011, 4(4):1-22.
  • 4Wertz J R, Bell R. Autonomous rendezvous and docking tech nologies status and prospects[C]//Proc, of the SPIE Space Systems Technology and Operations, 2003 : 20 - 30.
  • 5Zimpfer D, Kaehmar P, Tuohy S. Autonomous rendezvous, capture and in space assembly: past, present and future[C]// Proc. of the 1st Space Ea~ploration Conference : Continuing the Voyage of Discovery, 2005 : 234 - 245.
  • 6杨乐平,朱彦伟,黄涣.航天器相对运动轨迹规划与控制[M].北京:国防工业出版社,2010: 5341.
  • 7Clohessy W H, Wiltshire R S. Terminal guidance system for satellite rendezvous [J]. Journal of the Aerospace Sciences, 1960, 27(9) :653 - 658.
  • 8Sun C H, Duan H B, Shi Y H. Optimal satellite formation reconfig- uration based on close&loop brain storm optimizaion[J]. IEEE Computationa! Intelligence Magazine, 2013, 8(4) :39 - 51.
  • 9Kim S G, Crassidis J L, Cheng Y, et al. Kalman filtering for relative spacecraft attitude and position estimation[J]. Journal of Guidance, Control, and Dynamics, 2007, 30(1):133- 142.
  • 10Xing Y J, Cao X B, Zhang S J, et al. Relative position and at titude estimation for satellite formation with coupled translational and rotational dynamics[J]. Acta Astronautica, 2010, 67 (3/4) : 455 -467.

二级参考文献20

  • 1Meirovitch L, Chen Y. Trajectory and control optimiza- tion for flexible space robots[J]. Journal of Guidance, Control, and Dynamics, 1995, 18(3): 493- 502.
  • 2Seweryn K, Banaszkiewicz M. Optimization of the trajectory of a general free-flying manipulator during the rendezvous maneuver[R]. AIAA-2008-7273, 2008.
  • 3Hablani H B. Autonomous inertial relative navigation with sight-line-stabilized integrated sensors for spacecraft rendezvous[J]. Journal of Guidance, Control, and Dynamics, 2009, 32(1): 172 -183.
  • 4Shibata M, Ichikawa A. Orbital rendezvous and flyaround based on null controllability with vanishing energy [J]. Journal of Guidance, Control, and Dynamics, 2007, 30 (4) : 934-945.
  • 5Sebastian G. Modeling the coupled translational and rotational relative dynamics for formation flying control[R]. AIAA-2005-6091 , 2005.
  • 6Pan H, Kapila V. Adaptive nonlinear control for space craft formation flying with coupled translational and atti tude dynamics[C]//Proceedings of the 40th IEEE Conference on Decision and Control. 2001, 3. 2057- 2062.
  • 7Pan H, Wong H, Kapila V. Output feedback control for spacecraft with coupled translation and attitude dynamics [C] // Proceedings of the 43rd IEEE Conference on Decision and Control. 2004, 4: 4453-4458.
  • 8Wong H, Pan H, Kapila V. Output feedback control for spacecraft formation flying with coupled translation and attitude dynamics[C]//Proeeedings of the 2005 American Control Conference. 2005, 4:2419- 2426.
  • 9Subbarao K, Welsh S. Nonlinear control of motion synchronization for satellite proximity operations[J]. Journal of Guidance, Control, and Dynamics, 2008, 31(5) : 1284- 1294.
  • 10Bando M, Ichikawa A. Periodic orbits of nonlinear relative dynamics and satellite formation[J]. Journal of Guidance, Control, and Dynamics, 2009, 32(4): 1200-1208.

共引文献28

同被引文献30

  • 1SINGLA P,SUBBARAO K,JUNKINS J L.Adaptive output feedback control for spacecraft rendezvous and docking under measurement uncertainty[J].Journal of Guidance,Control,and Dynamics,2006,29(4):892-902.
  • 2XI Tao,LI Jiancheng,PAN Weiquan.Nonlinear adaptive feedback control for spacecraft proximity formation flying[C J//2013 International Conference on Mechanical,Automotive and Materials Engineering.Hong Kong:Trans Tech Publications Ltd.,2013:446-450.
  • 3GAO Huijun,YANG Xuebo,SHI Peng.Multi-objective robust H50 control of spacecraft rendezvous[J].IEEE Trans.Control Syst.TechnoL,2009,17(4):794-802..
  • 4GAO Xiangyu,TEO K L,DUAN Guangren.Robust H00 control of spacecraft rendezvous on elliptical orbit[J].Journal of the Franklin Institute,2012,349(8):2515-2529.
  • 5UTKIN V I,POZNYAK A S.Adaptive sliding mode control with application to super-twist algorithm;Equivalent control method[J].Automatica,2013,49(I);39-47.
  • 6PUKDEBOON C.Second-order sliding mode controllers for spacecraft relative translation[J].Applied Mathematical Sciences,2012,6(100);4965-4979.
  • 7PUKDEBOON C.Finite-time second-order sliding mode controllers for spacecraft attitude tracking[J].Mathematical Problems in Engineering,2013,2013(2013):1-12.
  • 8SHTESSEL Y,TALEB M,PLESTAN F.A novel adaptive-gain supertwisting sliding mode controller:Methodology and application[J].Automatica,2012,48(5):759-769.
  • 9CLOHESSY W H,WILTSHIRE R S.Terminal guidance system for satellite rendezvous[J].Journal of the Aerospace Sciences,1960,27(9):653-658.
  • 10LEVANT A.Sliding order and sliding accuracy in sliding mode CMitrol[J].International Journal of Control,1993,58(6):1247-1263.

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部