期刊文献+

一种交流电机故障诊断中的特征提取与强化 被引量:1

A Feature Enhancement and Extraction Method for Motor Failure Diagnosis
下载PDF
导出
摘要 为提高电机故障诊断的准确率和有效性,提出了一种故障特征提取与强化的新方法.即在对所采集的交流电机振动加速度信号进行数据预处理之后,用盲源分离方法进行独立振动源的分离,然后采用小波包分析方法进行特征提取,并进行特征频带的简化及特征强化处理,特征强化后的数据作为交流电机故障诊断模型的输入.该方法通过对振动加速度信号进行分离,能够分离出混合信号中的独立振动源,提高了故障特征提取的正确率和准确度;通过对特征频带化简,减少了故障诊断模型的输入,进而简化了模型的结构;特征强化使模型能够更有效地识别故障状态. In order to improve the accuracy and effectiveness of motor fault diagnosis,a new method of fault feature enhancement and extraction is proposed.After data preprocessing the sampled AC motor vibration acceleration signal,an independent vibration source separation with blind source separation method is executed,then the feature extraction with wavelet packet analysis method and feature frequency band simplifying and feature enhancement are conducted,and the feature enhanced data are used as the input to the AC motor fault diagnosis model.With this method,the independent vibration source in the mixed signal can be separated by separating vibration acceleration,and improved the accuracy of fault feature extraction.With the feature band simplification,the input to the fault diagnosis model can be reduced with simplified model structure.Feature enhancement model will help to identify and predict failure more effectively.
出处 《大连交通大学学报》 CAS 2014年第2期93-97,共5页 Journal of Dalian Jiaotong University
基金 国家"863"计划资助项目(2012AA040912) 辽宁省教育厅高等学校科学研究计划资助项目(L2011077 L2012159)
关键词 混合振动源分离 特征提取 特征强化 交流电机 故障诊断 mixed vibration source separation feature extraction feature enhancement AC motor fault diagnosis
  • 相关文献

参考文献10

二级参考文献62

共引文献222

同被引文献13

  • 1任斌,丰镇平.改进遗传算法与粒子群优化算法及其对比分析[J].南京师范大学学报(工程技术版),2002,2(2):14-20. 被引量:35
  • 2王雪梅,王义和.模拟退火算法与遗传算法的结合[J].计算机学报,1997,20(4):381-384. 被引量:123
  • 3GIAP QUANG HUY,PLOIX STEPHANE,ADROT OLIVIER,et al.Christian Interactive diagnosis for a grid network of rain gauges using fuzzy reasoning[J].Engineering Applications of Artificial Intelligence,2014,36:99-113.
  • 4SARAVANAN N,SIDDABATTUNI,KUMAR V N S,et al.Fault diagnosis of spur bevel gear box using artificialneural network(ANN),and proximal support vector machine(PSVM)[J].Applied Soft Computing Journal,2010,10(1):344-360.
  • 5WANG M H.TSAI H H.Fuel cell fault forecasting system using grey and extension theories[J].IET Renewable Power Generation,2012,6(6):373-380.
  • 6NGUYEN N-T,LEE H-H.Improvement of induction motor fault diagnosis performance by using genetic algorithm-based feature selection[J].Proceedings of the Institution of Mechanical Engineers,Part C:Journal of Mechanical Engineering Science,2008,222(8):1613-1619.
  • 7WU JIAN-DA,LIU CHIU-HONG.An expert system for fault diagnosis in internal combustion engines using wavelet packet transform and neural network[J].Expert Systems with Applications,2009,36(3):4278-4286.
  • 8WIDODO ACHMAD,KIM ERIC Y,SON JONG-DUK,et al.Fault diagnosis of low speed bearing based on relevance vector machine and support vector machine[J].Expert Systems with Applications,2009,36(3):7252-7261.
  • 9OLIVIER CHAPELLE,VLADIMIR VAPNIK,OLIVIER BOUSQUET,et al.Choosing Multiple Parameters for Support Vector Machines[J].Machine Leaning,2002,(46):131-159.
  • 10VAPNIK V N.The Nature of Statistical Learning Theory[M].Germany:Springer,2000.

引证文献1

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部