期刊文献+

一种基于稀疏表达和光流的目标跟踪方法 被引量:1

Tracking Object Based on Sparse Representation and Optical Flow
下载PDF
导出
摘要 提出一种将稀疏表达技术融入到传统光流算法的目标跟踪方法.首先使用FAST和Harris算法在视频序列的每一帧中为光流算法采集运动目标的特征点,之后光流算法基于后向跟踪-形心配准的方法对跟踪目标完成粗略定位.在当前帧的粗略定位处应用仿射变换产生N个候选区域.最后应用稀疏表达技术判断出与原始目标匹配率最高的仿射变换区域做为最终目标跟踪区域.实验结果表明,该算法既能较好地适应目标的外观变化,又具有较强的抗遮挡能力,鲁棒性强. A novel tracking algorithm that merges sparse representation with the optical flow is presentsed Fast and Harris algorithms are used to pick up the corner points of motion targets in every video image frame for the optical flow method.Based on backward tracking and object cantroid registration,the approximately tracking result is achieved.Affine transformation is employed draw N candidates around the approximately tracking result in the current frame,and a sparse representation method is developed to compute the highest similarity between the candidates and the original target.Experimental results are presented to demonstrate that the algorithm can be adaptive to the appearance changes as well as occlusions with strong robust.
作者 牛一捷
出处 《大连交通大学学报》 CAS 2014年第2期102-107,共6页 Journal of Dalian Jiaotong University
关键词 跟踪 稀疏表达 光流 仿射变换 FAST track sparse representation optical flow affine FAST
  • 相关文献

参考文献10

  • 1Lucas B D, technique w CAI, 1981, Grabner H Kanade T. An iterative image registration th an application to stereo vision [ C ]//IJ- 81 : 674-679.
  • 2Bischof H. On-line boosting and vision [ C//Computer Vision and Pattern Recognition, 2006 IEEE Computer Society Conference on IEEE, 2006, 1 : 260 -267.
  • 3Stalder S, Grabner H, Van Gool L. Beyond semi-super- vised tracking: Tracking should be as simple as detec- tion, but not simpler than recognition [ C]//Computer Vision Workshops (ICCV Workshops), 2009 IEEE 12th International Conference on IEEE, 2009: 1409-1416.
  • 4Kalal Z, Mikolajczyk K, Matas J. Forward-backward er- ror: Automatic detection of tracking failures[ C]//Pattern Recognition (ICPR) , 2010 20th International Conference on IEEE, 2010: 2756-2759.
  • 5Harris C, Stephens M. A combined corner and edge de- tector[ C]//Alvey vision conference, 1988, 15: 50.
  • 6Rosten E, Drummond T. Machine learning for high- speed comer detection [ C ]//Computer Vision ECCV 2006. Springer Berlin Heidelberg, 2006: 430-443.
  • 7Ross D A, Lim J, Lin R S, et al. Incremental learning for robust visual tracking [ J ]. International Journal of Computer Vision, 2008, 77 ( 1-3 ) : 125-141.
  • 8Mei X, Ling H. Robust visual tracking using minimiza- tion[ C ]//Computer Vision, 2009 IEEE 12th Interna- tional Conference on IEEE, 2009: 1436-1443.
  • 9Cands E J, Romberg J, Tao T. Robust uncertainty principles: Exact signal reconstruction from highly in- complete frequency information [ J ]. Information Theo- ry, IEEE Transactions on, 2006, 52(2) : 489-509.
  • 10Zhong W, Lu H, Yang M H. Robust object tracking via sparsity-based collaborative model [ C ]//Computer Vi- sion and Pattern Recognition (CVPR), 2012 IEEE Conference on IEEE, 2012: 1838-1845.

同被引文献3

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部