期刊文献+

月球着陆器悬停阶段相对自主导航方法

Hover-stage lunar lander autonomous relatively navigation
下载PDF
导出
摘要 月球着陆器着陆阶段导航信息分析是实现安全软着陆月面的一个关键.针对悬停阶段导航信息的要求,根据月球着陆器携带的仪器设备及其获取月面信息的特点,利用激光测距仪和光学导航相机进行光学相对导航.首先建立相对导航坐标系;其次根据各个坐标系之间的关系确定各转换矩阵和导航信息,估算着陆器相对月面着陆点的位置和姿态;最后通过仿真实验对该方法进行验证.结果表明,将激光测距仪和光学导航相机在着陆悬停阶段获取的月面信息进行融合,能快速、精确进行相对位置、姿态计算;对我国下一步的探月有重要应用价值,并可应用于火星探测和其他小行星探测的软着陆的近距相对导航. The lunar lander landing phase navigation information analysis is a key to achieve the safety soft landing on lunar surface. According to requirements for the hover-stage navigation, the lunar lander carry-ing equipment and its access to the characteristics of the lunar surface, laser rangefinder and optical navigation camera optical were used in autonomous relative navigation. A coordinate system relative navigation was crea- ted. According to the relationship between the various coordinate systems, the transformation matrix and navi-gation information was determined, the position and attitude of the lander relative lunar landing point was esti- mated. Finally, the method was verified by simulation experiments. Results show that this method can calcu-late relative position, posture fast and accurately. The method is valuable for further steps of moon exploration projects, and can be used as soft-landing close relative navigation for Mars and other asteroids exploration.
出处 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2014年第3期377-382,共6页 Journal of Beijing University of Aeronautics and Astronautics
基金 国家自然科学基金资助项目(61074184 61233005)
关键词 月球着陆器 非共线特征位置矢量 相对导航 导航相机 激光测距仪 lunar lander relatively station vector relatively navigation navigation camera laser rangefinder
  • 相关文献

参考文献15

  • 1Morse B J,Reed C L B,Eng D A,et al. NASA' s international lunar network ( ILN ) anchor nodes mission update [ C ]//60th In- ternational Astronautical Congress 2009. Paris, France:Interna- tional Astronautical Federation ,2009,2:963 - 970.
  • 2Moon Y J,Jang T S,Park C, et al. Conceptual design of a lunar landing mission using Korea space launch vihicle2 [ C ]//49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Florida: AIAA,2011 : 332-1 - 332-12.
  • 3Sostaric R,Merriam R S. Lunar ascent and rendezvous trajectory design[ C~//31th Annual AAS Guidance and Control Confer- ence. Colorado : AAS, 2008 : 1 - 23.
  • 4Klumpp J A,Collier J, Wolf A. LIDAR-based hazard avoidance for safe landing on Mars [ J ]. Journal of Guidance Control and Dynamics,2002,25 ( 6 ) : 1091 - 1099.
  • 5Gramling J J,Ngan Y P, Quinn D A, et al. A lunar communica- tions and navigation satellite concept for the robotic lunar explo- ration program [ C]//24th AIAA International Communications Satellite Systems Conference ( ICSSC ). California : A1AA, 2006, 5364 : 1 - 15.
  • 6Yang Cheng, Johnson A, Matthies L. MER-DIMES: a planetary landing application of computer vision [ C ]//Proceedings of 2005 IEEE Computer Society Conference on Compute Vision and Pat-tern Recognition. Piscataway, NJ : IEEE ,2005 ,1 : 806 - 813.
  • 7Cheng Y, Johnson A E, Mattheis L H. Passive imaging based hazard avoidance for spacecraft safe landing [ C ]//IEEE Aero- space Conference Proceedings. Piseataway, NJ: IEEE, 2006: 3024 - 3030.
  • 8Yamamoto M. Navigation and guidance simulation for SELENE-B lunar landing[ C ]//Proceeding of the 47th Space Sciences and Technology Conference. Niigata, Japan : [ s. n. ~ , 2003 : 174 - 179.
  • 9Howard A ,Seraji H. Multi-sensor terrain classification for safe spacecraft landing[ J]. IEEE Transactions on Aerospace and E- lectronic Systems, 2004,40 (4) : 1122 - 1131.
  • 10Lee A Y,Ely T, Sostaric R, et al. Preliminary design of the Guidance, navigation, and control system of the Altair lunar lan- der[ C]//AIAA Guidance,Navlgatlon and Control Conference. Reston,VA :AIAA,2010,7717 : 1 - 61.

二级参考文献13

  • 1Mueller E, Bilimoria K D, Frost C. Effects of control power and inceptor sensitivity on lunar !.ander handling qualities [ J ]. Jour- nal of Spacecraft and Rockets ,2011,48 ( 3 ) :454-466.
  • 2Ploen S R, Seraji H, Kinney C E. Determination of spacecraft landing footprint for safe planetary landing[ J ]. Journal Transac- tions on Aerospace and Electronic systems, 2009,45 ( 1 ) : 3 - 16.
  • 3Batterson S, Benson H, Gauh D, et al. NASA space vehicle de- sign criteria (environment) lunar surface models [R ], NASA, 1969.
  • 4Solver T,Amelin M. State duration based Monte Carlo simulation model with independent failures for distribution system reliability analysis [ C ]//9th International Conference on Probabilistic Methods Applied to Power Systems KTH . Stockholm, Sweden: 2006 1-8.
  • 5网易新闻.中国探月二期工程月球着陆器模型亮相[OL].[2010-11-16].http://war.NeWS.163.com/photoview/4CA50001/11855.html#p=6LJ08T2G4CA50001.
  • 6Cheatham D C, Bennett F V. Apollo lunar module landing strat- egy[ R]. Apollo Lunar Landing Symposium, 1966.
  • 7Zupp G A. A mathern atical procedure for predicting the touchdown dynamics of a soft-Landing vehicle [ R ]. NASA, 1971.
  • 8Blanchard U J. Full-scale dynamic landing-impact investigation of a prototype lunar module landing gear[ R ]. NASA, 1969.
  • 9Lafontaine J de, Ulitsky A,Tripp J W,et al. LAPS the develop- ment of a scanning lidar system with GNC for autonomous haz- ard avoidance and precision landing[ C]// Proceedings of SPIE de Lafontaine. 2004,5418:81-93.
  • 10Robert E L,George C. Monte Carlo approach to touchdown dy- namics for soft lunar landing [ R ]. NASA, 1965.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部