摘要
假定μ是仅满足一个增长条件的Radon测度,即存在一个正常数C使得对所有的x∈Rd,r>0以及对某个固定的n∈(0,d]都成立μ(B(x,r))≤Crn.对适当的参数ρ和λ,证明了参数型g*λ函数M*,ρλ和参数型Marcinkiewicz积分Mρ在Morrey空间Mp q(k,μ)上是有界的.
Let μ be a non-negative Radon measure on R^d which only satisfies the following growth condition that there exists a positive constant C such that μ(B(x,r))≤Cr^n for all x∈R^d, r〉0 and some fixed n∈(0,d]. We will prove that for suitable indexesρandλthe parametrized gλ^*function Mλ^* ρand Mρare bounded on M q^p (k, μ) spaces.
出处
《新疆大学学报(自然科学版)》
CAS
2014年第1期52-56,共5页
Journal of Xinjiang University(Natural Science Edition)
基金
Supported by the National Natural Science Foundation of China(11161044 and 11261055)