期刊文献+

Darboux transformation and positons of the inhomogeneous Hirota and the Maxwell-Bloch equation

Darboux transformation and positons of the inhomogeneous Hirota and the Maxwell-Bloch equation
原文传递
导出
摘要 In this paper,we derive Darboux transformation of the inhomogeneous Hirota and the Maxwell-Bloch(IH-MB)equations which are governed by femtosecond pulse propagation through inhomogeneous doped fibre.The determinant representation of Darboux transformation is used to derive soliton solutions,positon solutions to the IH-MB equations. In this paper, we derive Darboux transformation of the inhomogeneous Hirota and the Maxwell-Bloch (IH-MB) equations which are governed by femtosecond pulse propagation through inhomogeneous doped fibre. The determinant representation of Darboux transformation is used to derive soliton solutions, positon solutions to the IH-MB equations.
出处 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2014年第5期898-907,共10页 中国科学:物理学、力学、天文学(英文版)
基金 supported by the National Natural Science Foundation of China(Grant Nos.11201251 and 11271210) Zhejiang Provincial Natural Science Foundation of China(Grant No.LY12A01007) the Natural Science Foundation of Ningbo(Grant No.2013A610105) K.C.Wong Magna Fund in Ningbo University
关键词 inhomogeneous Hirota and Maxwell-Bloch equations Darboux transformation soliton solution positon solution Maxwell-Bloch方程 Darboux变换 不均匀 行列式表示 传输特性 飞秒脉冲 麦克斯韦 掺杂光纤
  • 相关文献

参考文献3

二级参考文献21

  • 1[7]K. Porsezian, A. Mahalingam, and P. Shanmugha Sundaram, Chaos, Solitons and Fractals 12 (2001) 1137.
  • 2[8]V.B. Matveev, M.A. Salle, Darboux Transformation andSolitons, Springer, Berlin (1991).
  • 3[9]LI Yi-Shen, GU Xin-Shen, and ZOU Mao-Rong, ActaMathematica Sinica (New Series) 3 (1985) 143.
  • 4[10]GU Chao-Hao and ZHOU Zi-Xiang, Lett. Math. Phys.13 (1987) 179.
  • 5[11]K. Porsezian, J. Mod. Opt. 47 (2000) 1635.
  • 6[1]A.I. Maimistov and E.A. Manykin, Sov. Phys. JETP. 58(1983) 688.
  • 7[2]K. Porsezian and K. Nakkeeran, J. Mod. Opt. 42 (1995)1953.
  • 8[3]M. Nakazawa, E. Yamada, and H. Kubota, Phys. Rev.Lett. 66 (1991) 2625.
  • 9[4]M. Nakazawa, E. Yamada, and H. Kubota, Phys. Rev.A44 (1991) 5793.
  • 10[5]S. Kakei and J. Satsuma, J. Phys. Soc. Japan 63 (1994)885.

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部