期刊文献+

基于启发式算法的支持向量机选股模型 被引量:9

Stock Selection Model Based on Support Vector Machine within Heuristic Algorithm
原文传递
导出
摘要 发行流通股的上市公司财务数据是高维、复杂的,在利用财务指标对股票进行投资选择时往往难以全面考虑。为了从样本股的大量财务指标中提取出低维、有效的特征信息来构成支持向量机(SVM)的训练集,提出了一种启发式算法(HA)对原始财务数据进行预处理,在保存原始数据特征信息的同时提高了训练精度和训练效率。实证结果中,基于该启发式算法的支持向量机选股模型(HA-SVM)最终构造的股票组合的年收益显著高于同期基准组合的年收益。另外,进一步将被广泛使用于降维和数据特征提取的主成分分析法(PCA)与该启发式算法进行对比分析,结果表明,HA-SVM模型的训练准确率、预测准确率以及所选股票组合的年收益情况均显著高于PCA-SVM模型。 The financial figures of listed company issuing circulation stocks are complicated and high dimensional, which makes it always difficult to make stock selection decisions using the financial figures with all respects considered. To extract the low-dimensional and efficient feature information constituting the training set of support vector machine, this paper proposes a method of heuristic algorithm (HA) to preproeess the original financial figures, which improves the training accuracy and training efficiency along with preservation of the original feature information at the same time. In the empirical results, the stock portfolio constructed by the stock selection model based on support vector machine within heuristic algorithm (HA-SVM) outperforms significantly the A-share index of Shanghai Stock Exchange during the same period. Moreover, this paper makes a comparison analysis between the heuristic algorithm and the principal component analysis (PCA) applied extensively in the dimension reduction and features extraction, and the result shows that the training accuracy, testing accuracy and annual return of the stock portfolio of HA-SVM model are all obviously higher than those of PCA-SVM model.
出处 《系统工程》 CSSCI CSCD 北大核心 2014年第2期40-48,共9页 Systems Engineering
关键词 选股模型 支持向量机 启发式算法 主成分分析法 Stock Selection Model Support Vector Machine Heuristic Algorithm Principal Component Analysis
  • 相关文献

参考文献5

二级参考文献11

共引文献712

同被引文献62

  • 1周万隆,姚艳.支持向量机在股票价格短期预测中的应用[J].商业研究,2006(6):160-162. 被引量:10
  • 2杨毓,蒙肖莲.用支持向量机(SVM)构建企业破产预测模型[J].金融研究,2006(10):65-75. 被引量:31
  • 3沈可挺,刘煜辉.中国股市中惯性与反向投资策略的获利模式[J].管理科学学报,2006,9(6):43-52. 被引量:22
  • 4Chen P,Zhang D.Constructing Support Vector Machines Ensemble Classification Method for Imbalanced Datasets Based on Fuzzy Integral[M]//Modern Advances in Applied Intelligence.Springer International Publishing,2014:70-76.
  • 5Deng N,Tian Y,Zhang C.Support Vector Machines:Theory,Algorithms,and Extensions[M].CRC Press,2012.
  • 6Vapnik V.The nature of statistical learning theory[M].Springer-Verlag New York Inc,2000.
  • 7Platt J.Fast training of support vector machines using sequential minimal optimization[M].Advances in kernel methods-support vector learning.Cambridge,MA:MIT Press,1999:185-2008.
  • 8Joachims T.Making large-scale svm learning practical[M]//Advances in Kernel Methods&mdash,Support Vector Learning.MIT Press,1999:169-184.
  • 9Chang C C,Lin C J.LIBSVM:A library for support vector machines[J].ACM Transactions on Intelligent System and Technology(TIST),2011,2(3):1-27.
  • 10Fan R E,Chang K W,Hsieh C J,et al.LIBLINEAR:a library for large linear classification[J].Journal of Machine Learning Research,2008,9(8):1871-1874.

引证文献9

二级引证文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部