期刊文献+

某涡轮导向叶片换热实验与计算 被引量:4

Heat transfer experiment and computation of a gas turbine vane
原文传递
导出
摘要 针对某涡轮导向叶片,实验测量了光滑叶片表面的压力系数和速比系数,并使用瞬态液晶测量技术获得了叶片全表面传热系数分布.分别使用shear stress transport(SST),k-ω,k-ε和renormalization group(RNG)k-ε四种湍流模型模拟了相同结构尺寸的叶栅通道内的流动与换热,并与实验结果进行对比.结果表明:压力面压力系数沿弧长方向逐渐下降,吸力面上压力系数先快速下降达到最小值后缓慢上升(出现逆压梯度).叶栅通道和叶片表面附近气流流动结构的复杂性导致叶片表面传热系数分布较为复杂.4种湍流模型对压力系数和速比系数的计算结果相互差别不大,计算数据也比较接近实验值.关于叶片表面传热系数,SST模型计算结果分布规律与实验接近,而其他3种湍流模型都没有能模拟出吸力面边界层分离对换热的影响. The surface pressure coefficient and velocity ratio coefficient gas turbine vane, crystal technique. models (SST, k- and the surface heat transfer coefficien For the same structure vane cascade, co, k-ε and RNG k-ε) were simulated pared data with experimental results. The on the pressure side along the acr direction, suction side and then slowly increased, whic tion of heat transfer coefficient is strongly in t was measured wit were tested h transient 1 the performances of four turbu the flow and heat trasfer, and on a iquid lence com- result shows that, pressure coefficient declined owever, droped 1S ue the adv nced by blade in the cascade passage. For pressure coefficient a suits of four turbulence models have no big difference a data. Surface heat transfer coeffi perimental data, while the other separation on the suction side. quickly to the on the erse pressure gradient. The distribu- the complex flow pattern around the nd velocity ratio coefficient, the re- nd are all very close to experimental cient distribution of SST model has similar trend with ex three models cannot simulate the effect of boundary layer
出处 《航空动力学报》 EI CAS CSCD 北大核心 2014年第3期526-531,共6页 Journal of Aerospace Power
基金 国家重点基础研究发展计划(2013CB035702)
关键词 涡轮导向叶片 压力系数 速比系数 表面传热系数 湍流模型 gas turbine vane pressure coefficient velocity ratio coefficient surface heat transfer coefficient turbulence model
  • 相关文献

参考文献15

  • 1Eckerle W A, Langston L S. Horseshoe vortex formation around a cylinder[J]. Journal of Turhomachinery, 1987, 109(2) :278-285.
  • 2Pierce F J, Shin J. Development of a turbulent junction vortex system[J]. Journal of Fluids Engineering, 1992, 14 (4) : 559-565.
  • 3Goldstein R J,Karni J. Effect of a wall boundary layer on local mass transfer from a cylinder in erossflow[J]. Journal of Heat Transfer,1984,106(2) :260-267.
  • 4Langston L S. Crossflows in a turbine cascade passage[J]. Journal of Engineering for Power, 1980,102(4) : 866-874.
  • 5Wang H P, Olson S J, Goldstein R J, et al. Flow visualiza- tion in a linear turbine cascade of high performance turbine [J]. Journal of Turbomachinery,1997,119(1) 11-8.
  • 6Irelang P T, Jones T V. Liquid crystal measurements of heat transfer and surface shear stress[J]. Measurement Science and Technology, 2000,11(7) : 969-986.
  • 7Hay J L, Hollingsworth D K. Calibration of micro-encap- sulated liquid crystals using hue angle and a dimensionless temperature[J]. Experimental Thermal and Fluid Science, 1998,18(2) :251-257.
  • 8Stasiek J, Stasiek A, Jewartowski M, et al. Liquid crystal thermography and true colour digital image processing[J]. Optics and Laser Technology, 2006,38 (2) : 243-256.
  • 9Camei C,Kim K, Hippensteele S A, A new hue capturing technique for the quantitative interpretation of liquid crys- tal images used in convective heat transfer studies[J]. Journal of Turbomachinery, 1992,114(5) : 765-775.
  • 10白江涛,朱惠人,张宗卫,许都纯.叶片全表面换热系数和冷却效率的实验测量[J].西安交通大学学报,2010,44(11):92-97. 被引量:11

二级参考文献26

共引文献35

同被引文献25

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部