期刊文献+

基于冷热电一体化的舱外航天服生命保障系统性能

Performance of extravehicular spacesuit life-support system based on cooling-heat-power integration
原文传递
导出
摘要 基于质子交换膜燃料电池(PEMFC)和热驱制冷,提出一种舱外航天服生命保障系统冷热电一体化方案.在分别建立金属储氢装置、PEMFC、热驱制冷系统和辐射散热器数学模型的基础上,利用冷热电一体化的热力学分析理论和方法进行了典型案例的计算,并重点分析了核心构件热驱制冷装置的参数对舱外航天服生命保障系统性能的影响.与传统的冷热电分产舱外航天服生命保障系统比较,该系统仅消耗84.6g氢气,且不需要向空间排放工质,能源利用率高达85.29%,在工质消耗与能源利用率上有较大的优势. Based on the study of proton exchange membrane fuel cell (PEMFC) and heat driven cooling technologies, an extravehicular spacesuit life-support system resulting from cooling-heat-power integration was presented. A typical case was calculated using the ther modynamic analysis theories and cooling-heat-power integration methods on the basis of mathematics of metal hydrogen storage, PEMFC, heat driven cooling system and radiation cooling device. The influence of the core components on the performance of the integration system was deeply analyzed. Compared with the typical spacesuit life-supported system based on cool, heat, power systems separated from each other, this system only consumes 84.6 g of hydrogen without loss of working materials, and the energy efficiency is as high as 85.29%. This combined system has a greater advantage in the loss of working materials and energy efficiency.
出处 《航空动力学报》 EI CAS CSCD 北大核心 2014年第3期541-548,共8页 Journal of Aerospace Power
基金 中国航天员科研训练中心人因工程国防科技重点实验室开放基金(HF2011-K-05)
关键词 航天服 冷热电一体化 质子交换膜燃料电池(PEMFC) 热驱制冷 辐射散热 spacesuit cool-heat-power integration proton exchange membrane fuel cell (PEMFC) heat driven cooling radiation cooling
  • 相关文献

参考文献17

  • 1吴志强,沈力平,袁修干.舱外航天服热控系统研究进展[J].航天医学与医学工程,1999,12(4):303-307. 被引量:5
  • 2丰茂龙,黄家荣,范含林,等.美国舱外航天服热控技术研究进展[J].载人航天,2011(3):36-41.
  • 3Houy D, Steinshnider J, Davies T L. Fuel cell/Li-ion bat tery hybrid power system for the advanced space suit[C]// Proceeding of the 3rd International Energy Conversion En- gineering Conference. San Francisco: AIAA, 2005.. 121- 126.
  • 4汪琼华,汤建华,胡国新.金属氢化物放氢过程数值分析[J].工程热物理学报,2006,27(6):1023-1025. 被引量:1
  • 5Drost M K,Friedrich M. Miniature beat pumps for porta- ble and distributed space conditioning applications[C]// Proceedings of the 32nd Intersociety Energy Conversion Engineering Conference. New Orleans= IEEE, 1997: 1271- 1274.
  • 6Joan C B. Performance analysis of combined micro-gas tur- bines and gas fired water/LiBr absorption chillers with post-eomhustion[J]. Applied Thermal Engineering, 2005, 25 (1) : 657-665.
  • 7Dexter P F,Haskin W L. Analysis of heat pump augmen- ted systems for spacecraft thermal eontrol[C] // Proceed-ings of AIAA 19th Thermo-physics Conference. Colorado: AIAA, 1984 : 25-28.
  • 8Larminie J,Dicks A. Fuel cell systems explained[M]. 2nd ed. West Sussex: Wiley, 2003.
  • 9Barbir F, Molter T,Dalton L. Efficiency and weight trade- off analysis of regenerative fuel ceils as energy storage for aerospace applications[J]. International Journal of Hydro- gen Energy,2005,30(4) :351-357.
  • 10Sharifi Asl S M, Rowshanzamir S, Eikani M H. Modeling and simulation of the steady-state and dynamic behavior of a PEM fuel cell[J]. Energy,2010,35(4) :1633-1646.

二级参考文献16

共引文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部