期刊文献+

一种基于有限元法和弹性接触理论的齿轮啮合刚度改进算法 被引量:19

A modified method for determining mesh stiffness of gears based on finite element method and elastic contact theory
原文传递
导出
摘要 提出了一种将有限元法和弹性接触理论相结合的齿轮啮合刚度计算方法.该方法利用子结构法提取齿面原始柔度矩阵并分离出接触点弯曲变形,根据线弹接触变形解析公式计算接触变形,通过求解非线性变形协调方程得到齿轮时变啮合刚度和齿面载荷分布.以一对齿轮副为例,计算的啮合刚度与航空标准计算结果相差在6%以内.该方法发挥了有限元法在预测物体整体变形方面的优势,同时结合弹性接触理论能够准确计算局部接触变形的优点,与常规有限元法相比,能够有效地提升计算效率.由于接触变形问题的非线性,啮合刚度随总啮合力增加呈现非线性增大的趋势. A method for determining mesh stiffness of gears was presented using a com- bination of the finite element method and elastic contact theory. The contact point bending deformations were separated from the original compliances matrix which was obtained using sub-structure method, while contact deformations were derived using an analytical formula of elastic line contact deformation. The time-varying mesh stiffness and load distributions of tooth could be obtained by solving the nonlinear deformation compatibility equations. Taking a gear pair as an example, the mesh stiffness using the presented method is within 6 % differ ence with the aerospace standard. As finite element method has an obvious advantage in pre dicting global deflection and the elastic contact theory can compute local contact deformation accurately, the method pressented combines these advantages to increase the computation ef ficiency compared to conventional finite element method. Given the nonlinearity of contact deformations problem, the mesh stiffness is increasing nonlinearly with the increase of total mesh force.
出处 《航空动力学报》 EI CAS CSCD 北大核心 2014年第3期682-688,共7页 Journal of Aerospace Power
基金 国家自然科学基金(51275423) 高等学校创新引智计划(B13044) 长安大学高速公路筑养装备与技术教育部工程研究中心开放基金(2013G1502057)
关键词 啮合刚度 载荷分布 有限元法 线接触理论 非线性啮合刚度 mesh stiffness load distribution finite element method line-contact theory nonlinear mesh stiffness
  • 相关文献

参考文献17

  • 1Vijayakar S M, Busby H R, Houser D R. Linearization of multibody frictional contact problems[J]. Computers and Structures, 1988,29 (4) : 569-576.
  • 2方宗德.齿轮轮齿承载接触分析(LTCA)的模型和方法[J].机械传动,1998,22(2):1-3. 被引量:80
  • 3LI Shuting. Gear contact model and loaded tooth contact analysis of a three-dimensional thin-rimmed gear[J]. Jour- nal of Mechanical Design,2002,124(3) :511-517.
  • 4LI Shuting. Effects of machining errors, assembly errors and tooth modifications on loading capacity, load-sharing ratio and transmission error of a pair of spur gears[J]. Mechanism and Machine Theory,2007,42(6):698-726.
  • 5WANG Yanzhong, WU Canhui, GONG Kang, et al. Load- ed tooth contact analysis of orthogonal face-gear drives[J]. Journal of Mechanical Engineering Science, 2012,226 (9) : 2309-2319.
  • 6Conry T F,Serireg A. A mathematical programming meth od for design of elastic bodies in contact[J]. Journal of Ap- plied Mechanics,1971,6(2) :387-392.
  • 7Conry T F, Seireg A. A mathematical programming tech nique for the evaluation of load distribution and optimal modification for gear systems[J]. Journal of Engineering for lndustry,1973,95(11) :1115 -1122.
  • 8Viiayakar S M. A combined surface integral and finite ele- ment solution fur a three-dimensional contact problem[J]. International Journal for Numerical Methods in Engineer- ing, 1991,31(3) :525-545.
  • 9Parker R G, Vijayakar S M. Non-linear dynamic response of a spur gear pair:modeling and experimental comparisons [J]. Journal of Sound and Vibration,2000,237(3) 435-455.
  • 10Cooley C G,Parker R G, Vijayakar S M. A frequency do- main finite element approach for three-dimensional gear dynamies[J]. Journal of Vibration and Acoustics, 2011, 133(8) ;041004.1-041004.9.

二级参考文献25

  • 1Theodossiades S, Natsiavas S. Nonlinear dynamics of gear pair systems with periodic stiffness and backlash[J]. Journal of Sound and Vibration,2000,229(2):287-310.
  • 2JIA Shengxiang, Howard I. Comparison of localized spelling and crack damage from dynamic modeling of spur gear vibrations[J]. Mechanical Systems and Signal Processing, 2006,20 :332-349.
  • 3LIN J, Parker R G. Planetary gear parametric instability caused by mesh stiffness variation[J]. Journal of Sound and Vibration, 2002,249 : 129- 145.
  • 4Kiracofe D R, Parker R G. Structured vibration modes of general compound planetary gear systems[J].Journal of Vibration and Acoustics,2007,129(1) : 1-16.
  • 5Umezawa K, Deflection and moments due to a concentrated load on a rack-shaped cantilever plate with finite width for gears[J]. Bulletin of JSME, 1972,15(79) : 116-130.
  • 6Umezawa K. The meshing test on helical gear under load transmissions: 1st report--The approximate formula for deflections of gear tooth[J]. Bulletin of JSME, 1972, 15(90):1632-1639.
  • 7Umezawa K. The meshing test on helical gear under load trartsmissions; 2nd report--The approximate formula for bending-moment distribution of gear tooth[J]. Bulletin of JSME, 1973,16(92):407-413.
  • 8Umezawa K. The meshing test on helical gear under load transmissions:3rd report The static behaviours of driven gear[J].Bulletin of JSME, 1974,17(112) : 1348-1355.
  • 9Umezawa K,Suzuki T, Houjoh H,et al. Vibrations of power transmission helical gears(the effect of contact ration on the vibration)[J]. Bulletin of JSME, 1985, 28 (238): 694 -700.
  • 10Umezawa K, Suzuki T, Sato T. Vibrations of power transmission helical gears(approximate equation of tooth stiffness)[J]. Bulletin of JSME,1986,29(251):1605-1611.

共引文献167

同被引文献122

引证文献19

二级引证文献80

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部