期刊文献+

Sensitivities of Tornadogenesis to Drop Size Distribution in a Simulated Subtropical Supercell over Eastern China 被引量:3

Sensitivities of Tornadogenesis to Drop Size Distribution in a Simulated Subtropical Supercell over Eastern China
下载PDF
导出
摘要 ABSTRACT Numerical simulations with the Advanced Regional Prediction System (ARPS) model were performed to investigate the impact of microphysical drop size distribution (DSD) on tornadogenesis in a subtropical supercell thunderstorm over Anhui Province, eastern China. Sensitivity experiments with different intercept parameters of rain, hail and snow DSDs in a Lin-type microphysics scheme were conducted. Results showed that rain and hail DSDs have a significant impact on the simulated storm both microphysically and dynamically. DSDs characterized by larger (smaller) intercepts have a smaller (larger) particle size and a lower (higher) mass-weighted mean fall velocity, and produce relatively stronger (weaker) and wider (narrower) cold pools through enhanced (reduced) rain evaporation and hail melting processes, which are then less favorable (favorable) for tornadogenesis. However, tornadogenesis will also be suppressed by the weakened mid-level mesocyclone when the cold pool is too weak. When compared to a U.S. Great Plain case, the two microphysical processes are more sensitive to DSD variations in the present case with a higher melting level and deeper warm layer. This suggests that DSD-related cloud microphysics has a stronger influence on tornadogenesis in supercells over the subtropics than the U.S. Great Plains. ABSTRACT Numerical simulations with the Advanced Regional Prediction System (ARPS) model were performed to investigate the impact of microphysical drop size distribution (DSD) on tornadogenesis in a subtropical supercell thunderstorm over Anhui Province, eastern China. Sensitivity experiments with different intercept parameters of rain, hail and snow DSDs in a Lin-type microphysics scheme were conducted. Results showed that rain and hail DSDs have a significant impact on the simulated storm both microphysically and dynamically. DSDs characterized by larger (smaller) intercepts have a smaller (larger) particle size and a lower (higher) mass-weighted mean fall velocity, and produce relatively stronger (weaker) and wider (narrower) cold pools through enhanced (reduced) rain evaporation and hail melting processes, which are then less favorable (favorable) for tornadogenesis. However, tornadogenesis will also be suppressed by the weakened mid-level mesocyclone when the cold pool is too weak. When compared to a U.S. Great Plain case, the two microphysical processes are more sensitive to DSD variations in the present case with a higher melting level and deeper warm layer. This suggests that DSD-related cloud microphysics has a stronger influence on tornadogenesis in supercells over the subtropics than the U.S. Great Plains.
出处 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2014年第3期657-668,共12页 大气科学进展(英文版)
基金 jointly supported by the National Natural Science Foundation of China (Grant Nos.41175118, 40775005 and 41175043) the National Basic Research Program of China (Grant No.2013CB430105) partially supported by the China Special Fund for Meteorological Research in the Public Interest (Grant Nos.GYHY200906003 and GYHY201306040)
关键词 tornadogenesis supercell storm MICROPHYSICS drop size distribution cold pool SUBTROPICS tornadogenesis, supercell storm, microphysics, drop size distribution, cold pool, subtropics
  • 相关文献

参考文献1

二级参考文献4

共引文献3

同被引文献10

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部