期刊文献+

离轴磁控溅射法生长1-3维PZT-NFO纳米复合薄膜 被引量:1

Preparation of 1-3 Dimensional PZT-NFO Nanocomposite Films by Off-axis Magnetron Sputtering
下载PDF
导出
摘要 采用90°离轴磁控溅射法,在MgAl2O4(001)单晶基片上自组装生长了Pb(Zr0.52Ti0.48)O3-NiFe2O4(PZT—NFO)复合磁电薄膜,并研究了基片温度、氩氧比和溅射功率等因素对薄膜结构和性能的影响。结果表明,适合生长PZT-NFO薄膜的条件为基片温度800℃,氩氧比1:1,溅射功率160W。XRD测试显示,PZT-NFO薄膜为外延生长薄膜,且PZT相与NFO相之间的垂直晶格失配非常小。AFM和SEM结构观察表明,薄膜具有清晰的1-3维纳米复合结构,铁磁相NFO纳米柱直径约为80~150nm。降低氩氧比有助于NFO相的形成,但溅射功率过大会造成1-3维结构向无规则0-3维结构转变。磁性能测量表明纳米复合薄膜的饱和磁化强度在120~160kA/m之间,低于块体的NFO相,可能是由于两相的界面扩散所造成。 Self-assembled nanocomposite Pb(Zr0.52Ti0.48)O3-NiFe204 films were prepared on the (001)-oriented MgA1204 substrates by a 90° off-axis magnetron sputtering method. The influences of substrate temperature, argon over oxygen ratio and sputtering power on the structure and properties of PZT-NFO nanocomposite films were studied. The optimal growth conditions are substrate temperature of 800 ℃, argon over oxygen ratio of 1:1 and sputtering power of 160 W. XRD studies reveal that the PZT-NFO film is epitaxial along both the in-plane and out-of-plane directions, and the vertical lattice mismatch between the PZT phase and the NFO phase is very small. AFM and SEM analysis show that the PZT-NFO films have clear 1-3 dimensional nanocomposite structure, and the diameter ofNFO nanorods is 80-150 nm. Further decreasing argon over oxygen ratio is beneficial for the formation of NFO. However, increasing RF power causes a transition from an 1-3 dimensional nanocomposite to a 0-3 dimensional chaotic structure. Magnetic measurement shows that the saturation magneti- zation of NFO phase is 120-160 kA/m, lower than that of bulk NFO phase, possibly due to the interracial diffusion between the NFO and the PZT phases.
出处 《无机材料学报》 SCIE EI CAS CSCD 北大核心 2014年第4期371-376,共6页 Journal of Inorganic Materials
基金 国家重大基础研究资助项目(2012CB933104) 国家自然科学基金(61271031) 中央高校科研业务费资助项目(ZYGX2010X009)~~
关键词 纳米复合 磁电效应 磁控溅射 自组装 nanocomposite magnetoelectric effect magnetron sputtering self-assembly
  • 相关文献

参考文献3

二级参考文献53

  • 1P Curie. J Physique 3e series. 1894,3: 393.
  • 2L D Landau , E Lifshitz. Electrodynamics of Continuous Media (Addison-Wesley: Translation of a Russian edition of 1958), 1960.
  • 3I E Dzyaloshinsky, J, Exptl. Theor. Phys, (USSR) 37,881 (1959) .[Sov. Phys.JETP 37, 628(1960)].
  • 4D N Astrov, J, Exptl. Theor. Phys. (1960),(USSR)38, 984 Sov. Phys. (1960),JETP 11, 708.
  • 5G T Rado , V J Folen. Observation of the Magnetically Induced Magnetoelectric Effect and Evidence for Antiferromagnetic Domains[J]. Phys. Rev. Lett. 1961, 7:310.
  • 6H Sehmid. Bull. Mater[J]. Sci. 1994, 17: 1411.
  • 7G Smolenskii , V A Ioffe. Colloque International du Magnetisme[J]. Communication. 1958, 71.
  • 8D N Astrov, B I Al'shin, R V Zhorin, etal. Sov. Phys. -JETP. 1968, 28: 1123.
  • 9T H O'Dell. Electronics and Power. 1965, 11: 266.
  • 10D N Astrov. Magnetoelectric Effect in Chromium Oxide[J]. Soviet Phys.-JETP. 1961, 13. 729.

共引文献5

同被引文献31

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部