期刊文献+

单粒子在金刚石(001)表面吸附与迁移的第一性原理计算 被引量:1

First Principle Calculations on Adsorption and Diffusion Behavior of Particles on Diamond(001) Surface
下载PDF
导出
摘要 为了探究纳米金刚石复合薄膜中界面相粒子的微观行为,采用第一性原理方法计算了碳、硅单粒子在清洁金刚石(001)表面的吸附作用与迁移行为。包括C、Si粒子在金刚石(001)面四个高对称位置的构型总能和吸附能以及其在金刚石(001)表面的迁移激活能。结果表明:最稳定的构型是沿(001)生长方向沉积粒子与表面层两粒子相接,且C、Si粒子迁移激活能分别为2.824 eV、0.475 eV。两激活能的差异表明:添加Si能显著促进碳粒子的扩散并形成更加致密的纳米金刚石复合薄膜。 In order to research into the microscopic behavior of interface particles in nano diamond composite films, the adsorption and diffusion behavior of carbon and silicon particles on diamond (001) surface has been calculated through the first principle method. The configuration energy and adsorption energy of carbon and silicon particles at four high symmetric locations on the diamond (001) surface were calculated, and the diffusion activation energy was also obtained. It turned out that the stable configuration is along with the diamond (001) growth orientation. In addition, the diffusion activation energy of carbon particle and silicon particle are respectively 2. 824 eV and 0. 475 eV. The difference between two activation energies illustrated that silicon particle can significantly promote carbon particle's diffusion, in which the denser nano diamond composite film can be formed.
出处 《人工晶体学报》 EI CAS CSCD 北大核心 2014年第3期625-630,647,共7页 Journal of Synthetic Crystals
基金 国家自然科学基金项目(50845065) 内蒙古自然科学基金项目(2010Zd21) 内蒙古科技大学创新基金资助项目(2012NCL050)
关键词 纳米金刚石 复合表面 迁移激活能 第一性原理 nano diamond composite surface diffusion energy first-principle
  • 相关文献

参考文献20

  • 1Li S Z, Shi Y L, Peng H R. Ti-Si-N Films Prepared by Plasma-Enhanced Chemical Vapor Deposition[J]. Plasma. Chem. and Plasma. Proc. , 1992,12(3) :287-297.
  • 2Veprek S, Niederhofer A, Moto K, et al. Composition, Nanostructure and Origin of the Ultrahardness in nc-TiN/a-Si3N4/a- and nc-TiSi2 Nanocomposites with Hv =80 to≥105 GPa[J]. Surf. Coat. Technol. ,2000,133:152-159.
  • 3Zhang R F, Argon A S, Veprek S. Electronic Structure, Stability, and Mechanism of the Decnhesion and Shear of Interfaces in Superhard Nanocomposites and Heterostructures[ J ]. Phys. Rev. B. ,2009,79,245426:1-13.
  • 4Scholze A, Schmidt W G, Kgckell P, et al. Diamond (111 ) and (100) Surface: Ab Initio Study of the Atomic and Electronic Structure[ J]. Mater. Science and Eng. B,1996,37:158-161.
  • 5Wang J J, Wang F, Li J M, et al. Comparative Study of Friction Properties for Hydrogen and Fluorine-modified Diamond Surfaces: A First- principles Investigation [ J ]. Surf. Science,2012 : 1-5.
  • 6Lu C, Wang Z L, Xu L F, et al. The Metallicity of B-doped Diamond Surface by First-principles Study[J]. Diamond & Related Materials,2010, 19:842-828.
  • 7Nie J L, Xiao H Y, Zu X T, et al. First Principles Calculations on Na and K-adsorbed Diamond (100) Surface[J]. Chem. Phys. ,2006,326: 308-314.
  • 8Yang H X, Xu L F, Gu C Z, et al. First-principles Study of Oxygenated Diamond (001) Surfaces with and without Hydrogen[J]. Appl. Surf. Science ,2007,253:4260-4266.
  • 9于洋,徐力方,顾长志.氢吸附金刚石(001)表面的第一性原理研究[J].物理学报,2004,53(8):2710-2714. 被引量:14
  • 10Masaaki A, Kazuyuki W. Ab Initio Study of Field Emission from Hydrogen Defects in Diamond Subsurfaces [ J ]. Appl Surf Science, 2004,237: 483-488.

二级参考文献34

  • 1[3]Weide J, Zhang Z,Baumann PK et al 1994 Phys. Rev. B 50 5803
  • 2[4]Landstrass M I, Ravi K V 1989 Appl. Phys. Lett. 55 975;Landstrass M I, Ravi K V Appl. Phys. Lett. 55 1391
  • 3[5]Grot S A et al 1990 IEEE Electron Device Lett. 11 100
  • 4[6]Maki T et al 1992 Jpn. J. Appl. Phys. 31 L1446
  • 5[7]Mori Y et al 1993 Jpn. J. Appl. Phys. 32 L987
  • 6[8]Albin S, Watkins L 1990 Appl. Phys. Lett. 56 1454
  • 7[9]Hayashi K, Yamanaka S, Watanabe H 1997 J. Appl. Phys. 81744
  • 8[10]Jiang N, Ito T 1999 J. Appl. Phys. 85 8267
  • 9[11]Geis M W, Twichell J C 1995 Appl. Phys. Lett. 67 1328
  • 10[12]Tsugawa K et al 1999 Diamond Relat. Mater. 8 927

共引文献14

同被引文献10

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部